全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

核-壳纳米Ag@ZrO2复合材料的制备及其抑菌性能
Preparation and its antibacterial properties of core-shell nanoAg@ZrO2 composite

DOI: 10.13801/j.cnki.fhclxb.20150921.003

Keywords: ZrO2,Ag纳米粒子,Ag@ZrO2复合材料,抑菌材料,抑菌性能
ZrO2
,Ag nanoparticles,Ag@ZrO2 composite,antibacterial material,antibacterial properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

首先,采用溶胶-凝胶法以锆酸四丁酯为原料制备了直径约为230 nm单分散性ZrO2亚微球;然后,以ZrO2为前体,加入少量AgNO3,用物理方法将Sn2+离子吸附在ZrO2表面,Ag+被还原成Ag0负载在ZrO2表面合成Ag@ZrO2晶种,加入甲醛合成核-壳纳米Ag@ZrO2复合材料;最后用TEM、XRD和UV-Vis对制备的ZrO2和Ag@ZrO2进行表征,并研究其对金黄色葡萄球菌(S.aureus)和大肠杆菌(E.coli)的抑菌性能。结果表明:当Ag浓度为0.6 mg/mL时,Ag@ZrO2对S.aureus和E.coli的抑菌率分别为95.5%和99.0%。因此,Ag@ZrO2作为理想的抗菌材料可以应用于日常生活和医疗实践中。 Monodisperse ZrO2 sub micrometer with diameters of about 230 nm were prepared firstly via sol-gel method using zirconium tetrabutoxide as raw material. Then, ZrO2 was treated as precursor, the Sn2+ ions were physically adsorbed on the surface of the ZrO2 with the addition of a small amount of AgNO3. The raw material seeds were loaded on the surface of the ZrO2 via reduction of Ag+ to Ag0. With the addition of formaldehyde, core-shell nano Ag@ZrO2 composites were synthesized. Finally, the as-prepared ZrO2 and Ag@ZrO2 were characterized by TEM, XRD and UV-Vis, and their antibacterial properties against Staphylococcus aureus(S.aureus) and Escherichia coli(E.coli) were also studied. The results indicate that the antibacterial rates against S.aureus and E.coli of the Ag@ZrO2 is 95.5% and 99.0%, respectively, when the Ag concentration is 0.6 mg/mL. Therefore, the Ag@ZrO2 can be used in daily life and medical practice as ideal antibacterial material. 国家自然科学基金重点项目(21373132)

References

[1]  ZHANG H J, CHEN G H. Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel method[J]. Environmental Science & Technology, 2009, 43(8):2905-2910.
[2]  LIM Y T, PARK O O, JUNG H T. Gold nanolayer-encapsulated silica particles synthesized by surface seeding and shell growing method:Near infrared responsive materials[J]. Journal of Colloid and Interface Science, 2003, 263(2):449-453.
[3]  DENG Z W, ZHU H B, PENG B, et al. Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities[J]. Applied Materials Interfaces, 2012, 4(10):5625-5632.
[4]  LIU Y C, ZHANG M Y, SHAN G Y, et al. Biocompatible ZnO/Au nanocomposites for ultrasensitive DNA detection using resonance raman scattering[J].The Journal of Physical Chemistry B, 2008, 112(20):6484-6489.
[5]  KIM S K, HAN S, JEON W J, et al. Impact of bimetal electrodes on dielectric properties of TiO2 and al-doped TiO2 films[J]. ACS Applied Materials Interfaces, 2012, 4(9):4726-4730.
[6]  ZHONG L S, HU J S, CUI Z M, et al.In-situ loading of noble metal nanoparticles on hydroxyl-group rich titania precursor and their catalytic applications[J]. Chemistry Materials, 2007, 19(18):4557-4562.
[7]  YOSHIO K, VERO'NICA S M, LUIS M L M. Deposition of silver nanoparticles onsilica spheres by pretreatment steps in electroless plating[J]. Chemistry Materials, 2001, 13(5):1630-1633.
[8]  YE X Y, ZHOU Y M, SUN Y Q, et al. Preparation and characterization of SiO2/ZrO2/Ag multicoated microspheres[J]. Applied Surface Science, 2008, 254(7):1942-1946.
[9]  ZHANG Y W, PENG H S, HUANG W, et al. Facile preparation and characterization of highly antimicrobial colloid agor Au nanoparticles[J]. Journal of Colloid and Interface Science, 2008, 325(2):371-376.
[10]  ZHANG Y Y, GUO S B, MA J Q, et al. Preparation, characterization, catalytic performanceand antibacterial activity of Ag photodeposited on monodisperse ZnO submicron spheres[J]. Journal of Sol-Gel Science and Technology, 2014, 72(1):171-178.
[11]  MICHAL M A, MALGORZATA G M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles[J]. Chemical Engineering Journal, 2013, 228:596-613.
[12]  ANATOLY I S, SUSUMU K, KEIJIRO K. Chemicalcomposition of eubacter iumnodatum cell wall peptidoglycan[J]. Archives of Microbiology, 1989, 151(4):353-358.
[13]  CHEN S F, LI J P, QIAN K. Large scale photochemical synthesis of M@TiO2 nanocomposites(M=Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect[J]. Nano Research, 2010, 3(4):244-255.
[14]  王德松, 张艳艳, 安静, 等. Ag/低分子量壳聚糖复合胶乳的制备及抗菌性能[J].复合材料学报, 2014, 31(5):1250-1257. WANG D S, ZHANG Y Y, AN J, et al. Preparation of Ag/low molecular weight chitosan composite colloids and their antibacterial activities[J]. Acta Materiae Compositae Sinica, 2014, 31(5):1250-1257(in Chinese).
[15]  CHEN X, ZHENG Z F, KE X B, et al. Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation[J]. Green Chemistry, 2010, 12(3):414-419.
[16]  XIE H, LU J L, SHEKHAR M, et al. Synthesis of na-stabilized nonporous t-ZrO2 supports and Pt/t-ZrO2 catalysts and application to water-gas-shift reaction poeppelmeier[J]. ACS Catalysis, 2013, 3(1):61-73.
[17]  ZHENG N F, STUCKYG D. A general synthetic strategy for oxide-supported metal nanoparticle catalysts[J]. Journal of the American Chemical Society, 2006, 128(44):14278-14280.
[18]  KIM Y J, LEE M H, KIM H J, et al. Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres[J]. Advanced Materials, 2009, 21(36):3668-3673.
[19]  GRABOWSKI R J, SZOCZYN M, SLIWA D M, et al. Influence of polymorphic ZrO2 phases and the silver electronic state on the activity of Ag/ZrO2 catalysts in the hydrogenation of CO2 to methanol[J]. ACS Catalysis, 2011, 1(4):266-278.
[20]  JOHANNA W, STEFANIE E A, GEORG M. Synthesis and characterisation of monodisperse zirconia particles[J]. European Journal Inorganic Chemistry, 2005, 2005(15):3149-3155.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133