全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于Al/PTFE真实细观特性统计模型的宏观力学性能模拟
Simulation on mechanical properties of Al/PTFE based on mesoscopic statistical model

DOI: 10.13801/j.cnki.fhclxb.20160315.015

Keywords: Al/PTFE,代表性体积单元,细观模型,周期性边界条件,孔洞,随机分布
Al/PTFE
,representative volume element,mesoscale model,periodic boundary condition,microvoids,random distribution

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过细观力学有限元方法对Al颗粒增强聚四氟乙烯(Al/PTFE)复合材料的宏观力学性能进行了研究,基于Al颗粒粒径分布统计规律及通过SEM对该复合材料孔洞含量的统计分析,在细观层次上建立了考虑颗粒和孔洞位置和尺寸分布的随机代表性体积单元(RVE),借助ABAQUS有限元软件,对二维平面应变和三维实体模型在单轴压缩载荷作用下的力学行为进行了数值仿真;并施加了周期性边界条件(PBC)以提高数值计算结果的准确性。此外,分析了不同颗粒含量下复合材料准静态应力-应变关系,重点对细观有限元模型与准静态压缩试验结果进行了对比分析。研究结果表明:二维和三维2种模型均能较好地模拟Al/PTFE的宏观力学性能,且二维模型较三维模型计算效率更高,并进一步证实了PBC的正确性和有效性。 Macro mechanical behavior of Al particles reinforced polytetrafluoroethylene(Al/PTFE) was studied by finite element method. According to statistics on Al particles and microvoids by SEM, representative volume element (RVE) models considering particles and microvoids distribution as well as geometry were reproduced. By using ABAQUS finite element software, mechanical behavior under uniaxial compression of both two dimension and three dimension models were simulated. Also periodic boundary condition (PBC) was applied to improve accuracy of calculation. Quasistatic stress-strain curves of composites of various particle fractions were analyzed, and especially results from simulations and experiments were compared. The results indicate that both two dimension and three dimension models are effective methods to predict the mechanical behavior of Al/PTFE, and two dimension models are more efficient. Furthermore, the validity and effectiveness of the PBC are verified. 国家自然科学基金(11202028,11472053);高等学校博士学科点专项科研基金(20121101110012)

References

[1]  BERGSTR?M J S, HILBERT L B. A constitutive model for predicting the large deformation thermomechanical behavior of fluoropolymers[J]. Mechanics of Materials, 2005, 37(8):899-913.
[2]  徐松林. Al/PTFE含能反应材料力学性能研究[D]. 长沙:国防科技大学, 2010. XU S L. Study on the mechanical performance of Polytetrafluorethylene/Al energetic reactive materials[D]. Changsha:National University of Defense Technology, 2010(in Chinese).
[3]  JOSHI V S. Process for making polytetrafluoroethylene-aluminium composite and product made:6547993B1[P]. 2003.
[4]  帅俊峰, 蒋建伟, 王树有, 等. 复合反应破片对钢靶侵彻的实验研究[J]. 含能材料, 2009, 17(6):722-725. SHUAI J F, JIANG J W, WANG S Y, et al. Compound reactive fragment penetrating steel target[J]. Chinese Journal of Energetic Materials, 2009, 17(6):722-725(in Chinese).
[5]  阳世清, 徐松林, 张彤. Al/PTFE反应材料制备工艺及性能[J]. 国防科技大学学报, 2008, 30(6):40-42. YANG S Q, XU S L, ZHANG T. Preparation and performance of Al/PTEF reactive materials[J]. Journal of National University of Defense Technology, 2008, 30(6):40-42(in Chinese).
[6]  SONG W, LIU H, NING J. Tensile property and crack propagation behavior of tungsten alloys[J]. International Journal of Modern Physics B, 2011, 24(11):1475-1492.
[7]  SMIT R J M, BREKELMANS W A M, MEIJER H E H. Prediction of the mechanical behaviour of nonlinear heterogeneous systems by multi-level finite element modeling[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 155(2):181-192.
[8]  SUQUET P M. Elements of homogenization theory for inelastic solid mechanics[M]. Berlin:Homogenization Techniques for Composite Media, 1987:194-275.
[9]  XIA Z, ZHANG Y, ELLYIN F. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International Journal of Solids and Structures, 2003, 40:1907-1921.
[10]  FEDER J. Random sequential adsorption[J]. Journal of Theoretical Biology, 1980, 87(2):237-254.
[11]  SUN C T, VAIDYA R S. Prediction of composite properties from a representative volume element[J]. Composites Science and Technology, 1996, 56(2):171-179.
[12]  EKICI R, APALAK M K, YILDIRIM M, et al. Simulated and actual micro-structure models on the indentation behaviours of particle reinforced metal matrix composites[J]. Materials Science & Engineering A, 2006, 606:290-298.
[13]  赵鹏铎, 卢芳云, 李俊玲, 等. 活性材料Al/PTFE动态压缩性能[J]. 含能材料, 2009, 17(4):459-462. ZHAO P D, LU Y F, LI J L, et al. The dynamic compressive properties of Al/PTFE reactive materials[J]. Chinese Journal of Energetic Materials, 2009, 17(4):459-462(in Chinese).
[14]  徐松林, 阳世清, 赵鹏铎, 等. Al/PTFE含能复合材料的压缩力学行为研究[J]. 力学学报, 2009, 41(5):708-712. XU S L, YANG S Q, ZHAO P D, et al. The study on the compressive behavior of Al/PTFE energetic composite[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5):708-712(in Chinese).
[15]  王海福, 刘宗伟, 俞为民, 等. 活性破片能量输出特性试验研究[J]. 北京理工大学学报, 2009, 29(8):663-666. WANG H F, LIU Z W, YU W M, et al. Experimental investigation of energy release characteristics of reactive fragments[J]. Transactions of Beijing Institute of Technology, 2009, 29(8):663-666(in Chinese).
[16]  JR WILLIS M, JASON T D. Effect of Al particle size on the impact initiation of pressed Al/PTFE composite rods[C]//Shock Compression of Condensed Matter. 2007:971-974.
[17]  谢长友, 蒋建伟, 帅俊峰, 等. 复合反应破片对柴油油箱的毁伤效应实验研究[J]. 高压物理学报, 2009, 23(6):447-452. XIE C Y, JIANG J W, SHUAI J F, et al. Experimental study on the damage effect of compound reactive fragment penetrating diesel oil tank[J]. Chinese Journal of High Pressure Physics, 2009, 23(6):447-452.
[18]  LI S, WONGSTO A. Unit cells for micromechanical analyses of particle-reinforced composites[J]. Mechanics of Materials, 2004, 36:543-572.
[19]  张超, 许希武, 严雪. 纺织复合材料细观力学的一般性周期性边界条件及其有限元实现[J]. 航空学报, 2013, 34(7):1636-1645. ZHANG C, XU X W, YAN X. General periodic boundary conditions and their application to micromechanical finite element analysis of textile composites[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1636-1645(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133