|
- 2016
耐高温高韧性聚酰亚胺树脂分子量与性能关系
|
Abstract:
首先,采用具有非对称结构的2,3,3',4'-联苯四甲酸二酐(α-BPDA)、二胺以及反应性封端剂4-苯乙炔苯酐(4-PEPA)合成了分子量分别为1 500、2 500、3 500、5 000 g/mol的热固性聚酰亚胺树脂;然后,采用FTIR、XRD、DSC、DMA、TGA和流变等表征分析方法,研究了分子量与固化反应过程、聚集态结构、耐热性能、流变性能、韧性性能的关系及其影响机制。结果表明:随着分子量增加,热固性聚酰亚胺树脂的玻璃化转变温度由369 ℃下降至344 ℃;熔体最低黏度由15.5 Pa·s增加至37 090.0 Pa·s;冲击强度由25.93 kJ/m2提高到45.04 kJ/m2。增大分子量导致热固性聚酰亚胺树脂的玻璃化转变温度和工艺性能下降,但韧性提高。 Thermoset polyimide resins with molecular weight of 1 500, 2 500, 3 500, 5 000 g/mol were synthesized firstly by asymmetric dianhydride 2,3,3',4'-biphenyltetracarboxylic dianhydride (α-BPDA), diamines and 4-phenylacetylene anhydride (4-PEPA) as the endcapping agent. Then, the relation between molecular weight and curing reaction process, aggregation structure, heat resistance, rheology property and toughness property, and its mechanism were investigated by characterisation and analyses methods such as FTIR, XRD, DSC, DMA, TGA, rheometer and so on. The results indicate that with the increase of molecular weight, glass transition temperature of resin decreases from 370 ℃ to 344 ℃, the lowest melt viscosity increases from 15.5 Pa·s to 37 090.0 Pa·s and impact strength also increases from 25.93 kJ/m2 to 45.04 kJ/m2.The glass transition temperature and processability of the thermoset polyimides will reduce by increasing its molecular weight, but toughness will increase. 航空基金(20145221004);重点实验室基金(9140C440107130C44001)
[1] | HERGENROTHER P M, CONNELL J W, SMITH J G Jr. Phenylethynyl containing imide oligomers[J]. Polymer, 2000, 41(13): 5073-5078. |
[2] | CHUANG K C, CRISS J M, MINTZ E A, et al. High Tg polyimides for resin transfer molding[C]//Proceedings of 50th SAMPE Symposium. [S.l.]: [s.n.], 2005: 2-8. |
[3] | CANO R J, GHOSE S, KENT A, et al. Processing and properties of vacuum assisted resin transfer molded phenylethynyl terminated imide composites[C]//SAMPE Symposium and Exhibition. [S.l.]: [s.n.], 2012: 3-6. |
[4] | SMITH J G, CONNELL J W, HERGENRO-THER P M. High temperature transfer molding resins based on 2,3,3',4'-biphenyltetracarboxylic dianhydride[J]. Macromolecular Symposia, 2003, 199(1): 401-418. |
[5] | CONNELL J W, SMITH J G, HERGENRO-THER P M, et al. High temperature transfer molding resin: preliminary composite properties of PETI-375[C]//SAMPE Symposium and Exhibition. [S.l.]: [s.n.], 2004: 16-20. |
[6] | 中国国家标准化管理委员会. 树脂浇铸体性能试验方法: GB/T 2567—2008[S]. 北京: 中国标准出版社, 2008. China National Standardization Management Committee. Test method for properties of resin casting body: GB/T 2567—2008[S]. Beijing: Standards Press of China, 2008 (in Chinese). |
[7] | 丁孟贤. 聚酰亚胺: 化学、结构与性能的关系及材料[M]. 北京: 科学出版社, 2006: 75-80, 148-150. DING M X. Polyimides: Chemistry, relationship between structure and properties and materials[M]. Beijing: Science Press, 2006: 75-80, 148-150 (in Chinese). |
[8] | LI Y T, MORGAN R J. Thermal cure of phenylethynyl-terminated AFR-PEPA-4 imide oligomer and a model compound[J]. Journal of Applied Polymer Science, 2006, 101(6): 4446-4453. |
[9] | SROOG C E. Polyimides[J]. Progress in Polymer Science, 1991, 16(4): 561-694. |
[10] | HERGENROTHER P M. The use, design, synthesis and properties of high performance/high temperature polymers: an overview[J]. High Performance Polymers, 2003, 15(1): 3-45. |
[11] | YANG J T, JI B, HUANG W, et al. Synthesis and characterization of organsoluble polyimide and copolyimides from alicyclic dianhydride[J]. Chinese Journal of Polymer Science, 2007, 25(4): 409-417. |
[12] | DING M X. Isomeric polyimides[J]. Progress in Polymer Science, 2007, 32(6): 623-668. |
[13] | MITTAL K L. Polyimides and other high-temperature polymers[M]. Leiden: VSP/Brill, 2009: 19-31. |
[14] | MEADOR M A. Recent advances in the development of processable high temperature polymers[J]. Annual Review of Materials Science, 2003, 28(1): 599-630. |
[15] | 孟祥胜, 李洪深, 杨慧丽, 等. 耐高温异构聚酰亚胺树脂及其复合材料[J]. 复合材料学报, 2011, 28(6): 23-27. MENG X S, LI H S, YANG H L, et al. High-temperature resistant isomeric polyimide resins and their composites[J]. Acta Materiae Compositae Sinica, 2011, 28(6): 23-27 (in Chinese). |
[16] | HOUT S L, JASON E. LINCOLN D, et al. Aging durability and high temperature mechanical performance of P2SI 900HT composite materials[C]//39th International SAMPE Technical Conference, Cincinnati. [S.l.]: [s.n.], 2007: 2-4. |
[17] | Boeing Commercial Airplanes. High speed civil transport study: summary: NASA CR—4234[R]. 1989. |
[18] | DONGHWAN CHO, GYEONGMO Y. Fluorescence characterization of LaRC PETI-5, BMI, and LaRC PETI-5/BMI blends[J]. Fibers and Polymers, 2002, 3(2): 60-67. |
[19] | CONNELL J W, SMITH J G, HERGENRO-THER P M, et al. High temperature transfer molding resins: Laminate properties of PETI-298 and PETI-330[J]. High Performance Polymers, 2003, 15(4): 375-394. |
[20] | CHEN C, YOKOTA R, HASEGAWA M, et al. Isomeric biphenyl polyimides. (I) Chemical structure-property relationships[J]. High Performance Polymers, 2005, 17(3): 317-333. |