|
- 2016
CaCl2/E51/尼龙6复合材料的制备与性能
|
Abstract:
通过熔融共混法制备了不同CaCl2质量分数的CaCl2/环氧树脂(E51)/尼龙6(PA6)复合材料,利用DSC、流变仪、FTIR和电子拉伸机等研究了不同CaCl2质量分数下CaCl2/E51/PA6复合材料结晶行为及其力学性能,并研究了其受限机制。力学性能结果表明,随着CaCl2质量分数的增加,CaCl2/E51/PA6复合材料拉伸强度呈现出先增大后减小的趋势,当CaCl2质量分数为3%时,复合材料拉伸强度达到最大值82.67 MPa,是纯PA6的拉伸强度(60.5 MPa)的1.366倍,而结晶行为结果表明,增加CaCl2的质量分数,CaCl2/E51/PA6复合材料的成核温度、晶体生长温度、熔融温度及玻璃化转变温度均向低温方向移动,成核密度和成核速率也逐渐减小,结晶能力下降,结晶度由原来25.22%变为9.90%。 The CaCl2/epoxy resin (E51)/polyamide 6 (PA6) composites with different mass fractions of CaCl2 were prepared by melting co-extrusion. The crystallization behavior and mechanical properties of CaCl2/E51/PA6 composites were studied by DSC, rheometer, FTIR and electronic tensile testing machine et al. The confined mechanism was also investigated. The mechanical property results show that with increases of mass fraction of CaCl2, the tensile strength of CaCl2/E51/PA6 composites increases firstly and decrease finally. When mass fraction of CaCl2 is 3%, the tensile strength of composites reaches maximum 82.67 MPa, which is 1.366 times of the tensile strength of pure PA6 (60.5 MPa). The crystallization behavior results show that increase of mass fraction of CaCl2 decrease the temperature of nucleation, the growth temperature of crystal, the melt temperature and glass transition temperature of CaCl2/E51 PA6 composites. The density of nucleation and the rate of nucleation also decrease gradually, the crystallization decreases and the degree of crystallinity changes from original 25.22% to 9.90%. 贵州省教育厅自然科学研究项目(黔教合KY字[2013]158);贵州省教育厅研究生卓越人才计划(黔教研ZYRC字[2013]006号)
[1] | SUN L, WARREN G L, DAVIS D, et al. Nylon toughened epoxy/SWCNT composites[J]. Journal of Materials Science, 2010, 46(1): 207-214. |
[2] | LI L, YANG G. Polyamide 6 composites reinforced withsilicon nitride whiskers: Synthesis, interface interaction, and mechanical properties[J]. Journal of Applied Polymer Science, 2010, 115(6): 3376-3384. |
[3] | 彭晓东, 刘相果, 李玉兰, 等. 聚酰胺复合材料的研究进展及工程应用[J]. 机械工程材料, 2000, 24(2): 1-4. PENG X D, LIU X G, LI Y L, et al. Development and application of polyamide composites[J]. Materials for Mechanical Engineering, 2000, 24(2): 1-4 (in Chinese). |
[4] | 徐丽华, 邱丽, 杨永珍, 等. 多壁碳纳米管/尼龙6复合材料的液相共混法制备及其性能[J]. 复合材料学报, 2012, 29(2): 73-78. XU L H, QIU L, YANG Y Z, et al. Liquid blending preparation and properties multiwalled carbon nanotubes/polyamide 6 composites[J]. Acta Materiae Compositae Sinica, 2012, 29(2): 73-78 (in Chinese). |
[5] | 严伟, 秦舒浩, 于杰, 等. 有机蒙脱土对ABS-PA6共混物形态结构与力学性能的影响[J]. 复合材料学报, 2010, 27(1): 37-42. YAN W, QIN S H, YU J, et al. Effects of organic montmorillonite on morphology and mechanical properties of acrylonitrile-butadiene-styrene (ABS)-polyamide 6 (PA6) blends[J]. Acta Materiae Compositae Sinica, 2010, 27(1): 37-42 (in Chinese). |
[6] | VARLEY R, RUSSELL J. Toughening of epoxy resin systems using low-viscosity additives[J]. Polymer International, 2004, 53(1): 78-84. |
[7] | RATNA D, VARLEY R, SIMON G P. Toughening of trifunctional epoxy using an epoxy-functionalized hyperbranched polymer[J]. Journal of Applied Polymer Science, 2003, 89(9): 2339-2345. |
[8] | LORENZO M L D, SILVESTRE C. Non-isothermal crystallization of polymers[J]. Progress in Polymer Science, 1999, 24(6): 917-950. |
[9] | 全国塑料制品标准化技术委员会. 塑料 拉伸性能的测定: GB/T 1040—2006[ S ]. 北京: 中国标准出版社, 2006. Committee of National Standardization for Plastics Products. Plastic—Determination of tensile properties: GB/T 1040—2006[S]. Beijing: Standards Press of China , 2006 (in Chinese). |
[10] | 全国塑料制品标准化技术委员会. 塑料 悬臂冲击强度的测定: GB/T 1843—2008[S]. 北京: 中国标准出版社, 2008. Committee of National Standardization for Plastics Products. Plastics—Determination of Izod impact strength: GB/T 1843—2008[S]. Beijing: Standards Press of China , 2008 (in Chinese) |
[11] | GUPTA A K, PURWAR S N. Crystallization of PP in PP/SEBS blends and its correlation with tensile properties[J]. Journal of Applied Polymer Science, 1984, 29(5): 1595-1609. |
[12] | MAI B, LI Z, LIU R, et al. Confined crystallization of core-forming blocks in nanoscale self-assembled micelles of poly(ε-caprolactone)-b-poly(ethylene oxide) in aqueous solution[J]. Journal of Polymer Research, 2013, 20(11): 299-310. |
[13] | 熊祖江, 李小宁, 贾清秀, 等. PA6/CaCl2复合物的络合机理研究[J]. 高分子学报, 2010(8): 1003-1008. XIONG Z J, LI X N, JIA Q X, et al. Complexation mechanism of polyamide 6/calcium chloride[J]. Acta Polymerica Sinica, 2010(8): 1003-1008 (in Chinese). |
[14] | CHEN Q, FAN Y, ZHENG Q. Rheological scaling and modeling of shear-enhanced crystallization rate of polypropylene[J]. Rheologica Acta, 2006, 46(2): 305-316. |
[15] | CARROT C, GUILLET J, BOUTAHAR K. Rheological behavior of a semi-crystalline polymer during isothermal crystallization[J]. Rheologica Acta, 1993, 32(6): 566-574. |
[16] | WU Q, LIU X, WU Q, et al. FT-IR spectroscopic study of hydrogen bonding in PA6/clay nanocomposites[J]. Polymer, 2002, 43(8): 2445-2449. |
[17] | VASANTHAN N R, SALEM D. FTIR spectroscopic characterization of structural changes in polyamide-6 fibers during annealing and drawing[J]. Journal of Polymer Science Part B: Polymer Physics, 2001, 39(5): 536-547. |
[18] | 张耀, 李宏飞, 安立佳, 等. 结晶高分子非晶区的结构及其动力学行为研究进展[J]. 高分子学报, 2013(4): 462-472. ZHANG Y, LI H F, AN L J, et al. Progress in studies on structure and relaxtion behavior of the amorphous phases in crystalline polymers[J]. Acta Polymerica Sinica, 2013(4): 462-472 (in Chinese). |
[19] | TURTURRO A, RUSSO S, ANTOLINI E, et al. Physical properties of anionic poly(ε-caprolactam) synthesized in the presence of calcium chloride[J]. Polymer, 1989, 30(6): 1099-1104. |
[20] | WENG W G, CHEN G H, WU D J. Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites[J]. Polymer, 2003, 44(26): 8119-8132. |
[21] | TEH J W, BLOM H P, RUDIN A. A study on the crystallization behavior of polypropylene, polyethylene and their blends by dynamic mechanical and thermal methods[J]. Polymer, 1994, 35(8): 1680-1687. |