|
- 2016
胶粘剂对表贴式FBG传感器应变传递系数的影响
|
Abstract:
利用光纤光栅(FBG)传感器对基体表面应变进行测量,通常利用胶粘剂将光纤光栅传感器粘贴在基体表面,使其与基体协调变形。但胶粘剂在不同表面的粘接性能不同,对应变测量所造成的影响也就存在差异。针对这一问题,本文通过实验,简化应变传递模型,对比FBG传感器粘贴在等强度梁以及标准树脂试件的应变测量结果。结果表明:胶粘剂在基体表面的剪切强度越大,表面粘贴式FBG传感器的应变传递系数也越大。 Fiber bragg grating (FBG) sensor is usually pasted on the substrate to measure the surface strain, so it can achieve the compatibility of deformation. But different adhesive show various property on different substrate, thus influence the strain measurement result. In response to this problem, an experiment was conducted to simply the strain transfer model. The strain result measured by FBG sensor pasted on the beam of uniform strength and the standard resin specimen was compared. The results show that the greater the shear strength of the adhesive on the substrate, the strain transfer coefficient of surface-bonded FBG sensor is better. 国家“973”计划(2010CB732003,2013CB036005);教育部长江学者和创新团队发展计划(IRT13071)
[1] | 田石柱, 张国庆, 王大鹏. 表面式光纤布拉格光栅传感器应变传递机理的研究[J]. 中国激光, 2014, 41(8):0805005. TIAN S Z, ZHANG G Q, WANG D P. Study on strain transfer mechanism of surface fiber bragg grating sensor[J]. Chinese Journal of Lasers, 2014, 41(8):0805005(in Chinese). |
[2] | 吴永红, 邵长江, 屈文俊, 等. 传感光纤光栅标准化埋入式封装的理论与实验研究[J]. 中国激光, 2010, 37(5):1290-1293. WU Y H, SHAO C J, QU W J, et al. Basic theoretical model and its experimental investigation for standard embedded sensing fiber bragg grating packaging[J]. Chinese Journal of Lasers, 2010, 37(5):1290-1293(in Chinese). |
[3] | 张桂花, 柴敬, 弥旭锋, 等. 光纤光栅在不同基底上的应变灵敏度研究[J]. 光通信技术, 2013, 7(1):30-32. ZHANG G H, CHAI J, MI X F, et al. Study of strain sensitivity FBG sensor on different basement[J]. Optical Communication Technology, 2013, 7(1):30-32(in Chinese). |
[4] | 马收, 李明, 郭建春, 等. 光纤布拉格光栅(FBG)传感器在金属试件上的粘接工艺研究[J]. 复合材料学报, 2013, 30(12):251-254. MA S, LI M, GUO J C, et al. The bonding process of fiber bragg grating(FBG) sensors in the metal specimens[J]. Acta Materiae Compositae Sinica, 2013, 30(12):251-254(in Chinese). |
[5] | 吴俊, 陈伟民, 章鹏, 等. 金属直接连接的布拉格光纤光栅应变测量方法[J]. 仪器仪表学报, 2012, 33(12):2709-2713. WU J, CHEN W M, ZHANG P, et al. Strain sensing method based on directly metalized bonding FBG to sub-strata[J]. Chinese Journal of Scientific Instrument, 2012, 33(12):2709-2713(in Chinese). |
[6] | 吴入军, 郑百林, 付昆昆, 等. 表面粘贴式光纤布拉格光栅传感器层状结构对测量应变的影响[J]. 光学精密工程, 2014, 22(12):3183-3190. WU R J, ZHENG B L, FU K K, et al. Influence of layered structure for surface-bonded FBG sensor on measured strain[J]. Editorial Office of Optics and Precision Engineering, 2014, 22(12):3183-3190(in Chinese). |
[7] | 李红, 祝连庆, 刘锋, 等. 裸光纤光栅表贴结构应变传递分析与实验研究[J]. 仪器仪表学报, 2014, 35(8):1744-1750. LI H, ZHU L Q, LIU F, et al. Strain transfer analysis and experimental research of surface-bonded bare FBG[J]. Chinese Journal of Scientific Instrument, 2014, 35(8):1744-1750(in Chinese). |
[8] | 孙圣和. 现代传感器发展方向[J]. 电子测量与仪器学报, 2009, 23(1):1-10. SUN S H. Development trend of modern sensor[J]. Journal of Electronic, Measurement and Instrument, 2009, 23(1):1-10(in Chinese). |
[9] | 万里冰, 武湛君, 张博明. 光纤布拉格光栅监测复合材料固化[J]. 复合材料学报, 2004, 21(6):1-5. WAN L B, WU Z J, ZHANG B M. Cure monitoring of composites using fiber bragg grating sensors[J]. Acta Materiae Compositae Sinica, 2004, 21(6):1-5(in Chinese). |
[10] | FARHAD A, YUAN L B. Mechanics of bond and interface shear transfer in optical fiber sensors[J]. Journal of Engineering Mechanics, 1998, 124(4):385-394. |
[11] | DUCK G, RENAUND G. The mechanical load transfer into a distributed optical fiber sensor due to a linear strain gradient:The embedded and surface bonded case[J]. Smart Mater Structure, 1999, 8(2):175-181. |
[12] | 李东升, 李宏男. 埋入式封装的光纤光栅传感器应变传递分析[J]. 力学学报, 2005, 37(4):435-441. LI D S, LI H N. Strain transferring analysis of embedded fiber bragg grating sensors[J]. Chinese Journal of Theoretical and Applied Mechani, 2005, 37(4):435-441(in Chinese). |
[13] | 孙丽. 光纤光栅传感应用问题解析[M]. 北京:科学出版社, 2012:22-27. SUN L. Analysis of FBG sensing application[M]. Beijing:Science Press, 2012:22-27(in Chinese). |
[14] | LI Q B, LI G, WANG G L. Effect of the plastic coating on strain measurement of concrete by fiber optic sensor[J]. Measurement, 2003, 34(3):215-227. |