全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

钢纤维对超高性能混凝土抗弯力学性能的影响
Effect of steel fibers on the flexural response of ultra-high performance concrete

DOI: 10.13801/j.cnki.fhclxb.20170612.005

Keywords: 超高性能混凝土,单一型,混杂型,受弯性能,最优搭配
ultra high performance concrete(UHPC)
,mono-fiber,hybrid-fiber,flexural response,optimal collocation

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究长、短钢纤维对超高性能混凝土(UHPC)受弯力学性能的影响,设计并制作了13组标准养护条件下的UHPC试件,其中3组为掺单一型短钢纤维,其他组均为掺混杂型钢纤维,对其进行立方体抗压及四点抗折试验。结果表明:对于掺加单一型短钢纤维的钢纤维/UHPC,钢纤维体积掺量为5vol%时,抗折强度最大,为19.98 MPa,继续增加钢纤维掺量,抗折强度反而降低;掺混杂型钢纤维的UHPC比单一型的抗折强度高,并且当长、短钢纤维体积掺量分别为2vol%和1vol%时,抗折强度达到最大,为23.55 MPa;钢纤维/UHPC的抗弯力学性能主要受长纤维的影响,短纤维影响较小;长纤维掺量对钢纤维/UHPC的抗折强度、延性以及抗弯韧性有一定影响,但是主要取决于长、短纤维的搭配,长、短纤维体积掺量最优搭配为2vol%和1vol%。 In order to investigate the effect of short and long steel fibers on the flexural response of ultra high performance concrete(UHPC), 3 groups of mono-fiber and 10 groups of hybrid-fiber reinforced UHPCs were designed and cubic compression test and four points bending test were performed. Test results show that:for mono-fiber reinforced UHPC, the highest bending stress is 19.98 MPa with a fiber volume content of 5vol% and the bending stress decreases if more fibers are added. For hybrid-fiber reinforced UHPC, bending stress is higher than the mono-fiber reinforced UHPC, the highest bending stress is 23.55 MPa with a fiber volume content of 2vol% and 1vol% for long and short steel fibers, respectively. The flexural response of steel fiber/UHPC is dominantly affected by the volume content of long fibers rather than that of short fibers. The mechanical performance such as bending strength, ductility and flexural toughness are not simply affected by the volume content of long fibers, the balance of volume contents between long and short steel fibers is very critical, the optimal result tested in this experiment is the group of 2vol% and 1vol% for long and short fibers, respectively. 国家自然科学基金(51278402)

References

[1]  ROSSI P. Ultra-high performance fiber-reinforced concretes[J]. Concrete International, 2001, 12(23):46-52.
[2]  BACHE H. Compact reinforced composite:United States, 4979992[P]. 1990-12-25.
[3]  RICHARD P, CHEYREZY M. Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25(7):1501-1511.
[4]  ROSSI P, ACKER P, MALIER Y. Effect of steel fibres at two different stages:The material and the structure[J]. Materials and Structures, 1987, 20(6):436-439.
[5]  MARKOVI AC'G I. High-performance hybrid-fiber concrete-development and utilization[D]. Delft:Delft University of Technology, 2006.
[6]  ROSSI P. Ultra high performance concretes[J]. Concrete International, 2008, 30(2):31-34.
[7]  中华人民共和国建设部. 混凝土用水标准:JGJ 63-2006[S]. 北京:中国建筑工业出版社, 2006. Ministry of Construction, Ministry of Construction of the People's Republic of China. Standard of water for concrete:JGJ 63-2006[S]. Beijing:China Architecture & Building Press, 2006(in Chinese).
[8]  国家冶金工业局. 混凝土用钢纤维:YB/T 151-1999[S]. 北京:中国标准出版社, 1999. State Bureau of Metallurgical Industry. Steel fibers for fiber reinforced concrete:YB/T 151-1999[S]. Beijing:China Standards Press, 1999(in Chinese).
[9]  中国国家标准化管理委员会. 活性粉末混凝土:GB/T 31387-2015[S]. 北京:中国标准出版社, 2015. Standardization Administration of the People's Republic of China. Reactive powder concrete:GB/T 31387-2015[S]. Beijing:China Standards Press, 2015(in Chinese).
[10]  KWON S, NISHIWAKI T, KIKUTA T, et al. Tensile behavior of ultra-high performance hybrid fiber reinforced cement-based composites[C]//VⅢ International Conference on Fracture Mechanics of Concrete and Concrete Structures. Sendai, Japan:School of Engineering Tohoku University, 2013.
[11]  高丹盈, 刘建秀. 钢纤维混凝土基本理论[M]. 北京:科学技术出版社, 1994. GAO D Y, LIU J X. Basic theory of steel fiber reinforced concrete[M]. Beijing:Science and Technology Press, 1994(in Chinese).
[12]  WILLE K, NAAMAN A E. Fracture energy of UHPFRC under direct tensile loading[C]//FraMCoS-7 International Conference. Jeju, Korea:2010:65-72.
[13]  BANTHIA N, GUPTA R. Hybrid fiber reinforced concrete (HyFRC):Fiber synergy in high strength matrices[J]. Materials and Structures, 2004, 37(10):707-716.
[14]  KWON S, NISHIWAKI T, KIKUTA T, et al. Mechanical properties of ultra-high-performance hybrid fiber-reinforced cement-based composites[C]//Symposium on Ultra-High Performance Fiber-Reinforced Concrete. Marseille, France:2013, 699-708.
[15]  ROSSI P. High performance multimodal fiber reinforced cement composites (HPMFRCC):The LCPC experience[J]. ACI Materials Journal, 1997, 94(6):478-483.
[16]  邓宗才. 混杂纤维增强超高性能混凝土弯曲韧性与评价方法[J]. 复合材料学报, 2016, 33(6):1274-1280. DENG Z C. Flexural toughness and characterization method of hybrid fibers reinforced ultra-high performance[J]. Acta Materiae Compositae Sinica, 2016, 33(6):1274-1280(in Chinese).
[17]  邓宗才, 冯琦. 混杂纤维活性粉末混凝土的断裂性能[J]. 建筑材料学报, 2016, 19(1):14-21. DENG Z C, FENG Q. Fracture properties of hybrid fiber reinforced reactive powder concrete[J]. Journal of Building Materials, 2016, 19(1):14-21(in Chinese).
[18]  丁一宁, 王卿, 林宇栋. 纤维对开裂后混凝土渗透性及裂缝恢复的影响[J]. 复合材料学报, 2017, 34(8):1853-1861. DING Y N, WANG Q, LIN Y D. Effect of fibers on permeability and crack relaxation of cracked concrete[J]. Acta Materiae Compositae Sinica, 2017, 34(8):1853-1861(in Chinese).
[19]  中国工程建设标准化协会. 钢纤维混凝土试验方法:CECS 13:89[S]. 北京:中国工程建设标准化协会, 1989. China Architecture and Building. Test method for steel fiber reinforced concrete:CECS13:89[S]. Beijing:China Architecture and Building Press, 1989(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133