全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

静电纺PMMA/EVOH-SO3Li锂离子电池隔膜复合材料的制备及性能
Preparation and properties of PMMA/EVOH-SO3Li Li-ion battery separator composite by electrospinning

DOI: 10.13801/j.cnki.fhclxb.20170608.004

Keywords: 锂离子电池隔膜,复合材料,聚甲基丙烯酸甲酯,聚乙烯-乙烯醇磺酸锂,高压静电纺丝,热收缩率,电化学性能
Li-ion battery separator
,composite,polymethylmethacrylate,lithium ethylene-vinyl alcohol copolymer sulfate,electrospinning,thermal shrinkage rate,electrochemical properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

以聚甲基丙烯酸甲酯(PMMA)和聚乙烯-乙烯醇磺酸锂(EVOH-SO3Li)为原料,通过高压静电纺丝法进行交替纺丝,制备PMMA/EVOH-SO3Li锂离子电池隔膜复合材料。通过FTIR、SEM、万能拉伸试验仪、TGA、IM6型电化学工作站和电池循环测试设备对PMMA/EVOH-SO3Li隔膜复合材料的性能进行检测表征。结果表明:PMMA/EVOH-SO3Li隔膜复合材料具有清晰的三维网状结构,与EVOH-SO3Li隔膜材料相比,改性后PMMA/EVOH-SO3Li隔膜复合材料的孔隙率、吸液率和拉伸强度分别提高至80%、340%和3.18 MPa,起始热分解温度升高至294℃,热收缩率也有所降低,并表现出良好的电化学性能。其中电化学稳定窗口由5.0V增加到5.6 V,界面阻抗由420.69 Ω降低至262.31 Ω,离子电导率则由1.560×10-3 S/cm提高至2.089×10-3 S/cm,并且经过100次循环充放电后,容量保持率仍高达93.7%。 Polymethylmethacrylate (PMMA)/lithium ethylene-vinyl alcohol copolymer sulfate (EVOH-SO3Li) Li-ion battery separator composite was prepared by means of electrostatic spinning alternated, PMMA and EVOH-SO3Li as raw materials. The performance of PMMA/EVOH-SO3Li separator composite was characterized by FTIR, SEM, universal tensile tester, TGA, IM6 electrochemical workstation and battery cycler. The results show that PMMA/EVOH-SO3Li separator composite has a clear three-dimensional network structure. Compared with EVOH-SO3Li separator, the porosity, absorption rate and tensile strength of modified PMMA/EVOH-SO3Li separator composite are increased to 80%, 340% and 3.18 MPa, respectively. The initial thermal decomposition temperature is also rised to 294℃. The thermal shrinkage rate is reduced. The excellent electrochemical performance is exhibited. The electrochemical stability window is increased from 5.0 V to 5.6 V. The interfacial impedance is reduced from 420.69 Ω to 262.31 Ω. The ionic conductivity is increased from 1.560×10-3 S/cm to 2.089×10-3 S/cm. The coulombic efficiency is 93.7% after 100 cycles of charge and discharge.

References

[1]  LI H, MA X T, SHI J L, et al. Preparation and properties of poly(ethylene oxide)gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries[J]. Electrochimica Acta, 2011, 56(6):2641-2647.
[2]  ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179):652-657.
[3]  LI F S, WU Y S, CHOU J, et al. A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes[J]. Advanced Materials, 2015, 27(1):130-137.
[4]  XIONG M, TANG H, WANG Y, et al. Ethylcellulose-coated polyolefin separators for lithium-ion batteries with improved safety performance[J]. Carbohydrate Polymers, 2014, 101:1140-1146.
[5]  吴再辉, 秦珊, 白帆, 等. 阻抗渐变低介电BaTiO3/PVDF复合纤维膜的设计与电纺制备[J]. 复合材料学报, 2016, 33(8):1671-1676. WU Z H, QIN S, BAI F, el al. Design and fabrication of low-dielectric BaTiO3/PVDF composite fibrous mat with impedance gradient by electrospinning[J]. Acta Materiae Compositae Sinica, 2016, 33(8):1671-1676(in Chinese).
[6]  王春红, 贺文婷, 王瑞. 利用静电纺丝技术制备纳米黏土/聚乳酸复合纳米纤维与其表征[J]. 复合材料学报, 2015, 32(2):378-384. WANG C H, HE W T, WANG R. Preparation and characterization of nanoclay/polylactide composite nanofibers via electrospinning technique[J]. Acta Materiae Compositae Sinica, 2015, 32(2):378-384(in Chinese).
[7]  FANG J, WANG X G, LIN T. Functional applications of electrospun nanofibers[J]. Nanofibers-production, Properties and Functional Applications, 2011, 53(15):2265-2286.
[8]  ZHANG J J, LIU Z H, KONG Q S, et al. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator[J]. ACS Applied Materials & Interfaces, 2013, 5(1):128-134.
[9]  HAO J, LEI G, LI Z, et al. A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery[J]. Journal of Membrane Science, 2013, 428:11-16.
[10]  FLORA X H, ULAGANATHAN M, BABU R S, et al. Evaluation of lithium ion conduction in PAN/PMMA-based polymer blend electrolytes for Li-ion battery applications[J]. Ionics, 2012, 18(8):731-736.
[11]  SOHN J Y, IM J S, SHIN J, et al. PVDF-HFP/PMMA-coated PE separator for lithium ion battery[J]. Journal of Solid State Electrochemistry, 2012, 16(2):551-556.
[12]  郭金亮, 巩桂芬, 张阳. EVOH磺酸锂无纺布薄膜的制备及性能研究[J]. 电池工业, 2012, 17(1):31-34. GUO J L, GONG G F, ZHANG Y. Investigation on preparation and properties of EVOH-SO3Li non-woven membrane[J]. Chinese Battery Industry, 2012, 17(1):31-34(in Chinese).
[13]  LEE J, LEE C L, PARK K, et al. Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium-ion batteries[J]. Journal of Power Sources, 2014, 248(4):1211-1217.
[14]  DING J, KONG Y, YANG J R. Polyimide/Poly-(ethylene terephthalate) composite membrane by electrospinning for nonwoven separator for lithium-ion battery[J]. Journal of the Electrochemical Society, 2012, 159(9):A1474-A1480.
[15]  GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery:A perspective[J]. Journal of the American Chemical Society, 2013, 135(4):1167-1176.
[16]  WANG C Y, ZHANG G, GE S, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587):515-518.
[17]  于宾, 焦晓宁. P(VDF-HFP)/Al2O3复合锂离子电池隔膜的电化学性能[J]. 电源技术, 2015, 39(4):702-705. YU B, JIAO X N. Electrochemical characterization of P(VDF-HFP)/Al2O3 composite separator for Li-ion battery[J]. Chinese Journal of Power Sources, 2015, 39(4):702-705(in Chinese).
[18]  YANG C L, LI Z H, LI W J, et al. Batwing-like polymer membrane consisting of PMMA-grafted electrospun PVDF-SiO2 nanocomposite fibers for lithium-ion batteries[J]. Journal of Membrane Science, 2015, 495(1):341-350.
[19]  NOTO D V, LAVINA S, GIFFIN G A, et al. Polymer electrolytes:Present, past and future[J]. Electrochimica Acta, 2011, 57:4-13.
[20]  孙美玲, 唐浩林, 潘牧. 动力锂离子电池隔膜的研究进展[J]. 材料导报, 2011, 25(9):44-50. SUN M L, TANG H L, PAN M. A review on the separators of power Li-ion batteries[J]. Materials Review, 2011, 25(9):44-50(in Chinese).
[21]  DING Y, HOU H, ZHAO Y, et al. Electrospun polyimide nanofibers and their applications[J]. Progress in Polymer Science, 2016, 61:67-103.
[22]  QUARTARONE E, MUSTARELLI P. Electrolytes for solid-state lithium rechargeable batteries:Recent advances and perspectives[J]. Chemical Society Reviews, 2011, 40(5):2525-2540.
[23]  YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte Chemie (International ed. in English), 2012, 51(24):5798-5800.
[24]  JANSEN A N, KAHAIAN A J, KEPLER K D, et al. Development of a high-power lithium-ion battery[J]. Journal of Power Sources, 1999, 81-82:902-905.
[25]  LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226(3):272-288.
[26]  HUANG X. Separator technologies for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2011, 15(4):649-662.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133