|
- 2018
ZrB2-SiC复相陶瓷涂层制备及其保护C/C-SiC复合材料性能
|
Abstract:
为提高C/C-SiC复合材料的超高温抗烧蚀性能,通过浆料涂刷和高温烧结相结合的方法在C/C-SiC复合材料表面制备了ZrB2-SiC复相陶瓷涂层,利用EDS、SEM对涂层的成分及微观形貌进行了分析。对涂层材料的力学性能和抗烧蚀性能进行了表征,结果表明:制备的ZrB2-SiC复相陶瓷涂层保护C/C-SiC复合材料的拉伸强度、弯曲强度及剪切强度分别为147 MPa、355 MPa和21.9 MPa,与无涂层保护的针刺C/C-SiC复合材料的力学性能相比略有下降。涂层材料具有良好的抗氧化烧蚀性能,经过热流密度为3 200 kW/m2的氧乙炔火焰烧蚀600 s试验,其线烧蚀率和质量烧蚀率分别为0.001 mm/s和0.0006 g/s。 A ZrB2-SiC ceramic coating was prepared on C/C-SiC composites by slurry painting and high temperature sintering to improve the ablation property of C/C-SiC composites at ultra high temperatures. The phase composition and microstructure of the ZrB2-SiC coating were analyzed by EDS and SEM. The mechanical and ablation properties of the coatings were investigated. The results show that the tensile strength, flexural strength and shear strength of the C/C-SiC composites protected by ZrB2-SiC coatings are 147 MPa, 355 MPa and 21.9 MPa, respectively. The mechanical properties of the coated C/C-SiC composites are little lower than the counterpart properties of the uncoated C/C-SiC composites. The coated C/C-SiC composite has an outstanding ablation property. After ablation by oxyacetylene torch test at a heat flux of 3 200 kW/m2 for 600 s, the coated sample has an average mass ablation rate of 0.001 mm/s and an average linear ablation rate of 0.0006 g/s.
[1] | 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6. ZHANG L T, CHENG L F. Continuous fiber toughening ceramic matrix composites sustainable development strategy[J]. Acta Materiae Compositae Sinica, 2007, 24(2):1-6(in Chinese). |
[2] | ODESHI A G, MUCHA H, WIELAGE B. Manufacture and characterisation of a low cost carbon fibre reinforced C/SiC dual matrix composite[J]. Carbon, 2006, 44(10):1994-2001. |
[3] | YAN L S, CUI H. Carbon cloth reinforced polyarylacetylene ablative materials[J]. Journal of Advanced Materials, 2007, 39(3):22-25. |
[4] | SCHMIDT S, BEYER S, KNABE H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautica, 2004, 55(3-9):409-420. |
[5] | PAVESE M, FINO P, BADINI C, et al. HfB2/SiC as a protective coating for 2D Cf/SiC composites:Effect of high temperature oxidation on mechanical properties[J]. Surface and Coatings Technology, 2008, 202(10):2059-2067. |
[6] | LIU L, LI H J, WEI F, et al. Ablation in different heat fluxes of C/C composites modified by ZrB2-ZrC and ZrB2-ZrC-SiC particles[J]. Corrosion Science, 2013, 74:159-167. |
[7] | 李仲平. 防热复合材料发展与展望[J]. 复合材料学报, 2011, 28(2):1-9. LI Z P. Major advancement and development trends of TPS composites[J]. Acta Materiae Compositae Sinica, 2011, 28(2):1-9(in Chinese). |
[8] | KONTINOS D A, GEE K, PRABHU D K. Temperature constraints at the sharp leading edge of a crew transfer vehicle[C]//35th AIAA Thermophysics Conference. Anaheim, CA:AIAA, 2001. |
[9] | GLASS D E. Ceramic matrix composite thermal protection systems and hot structures for hypersonic vehicles[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, OH:AIAA, 2008. |
[10] | DIRLING R B. Progress in materials and structures evaluation for the HyTech program[C]//8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Hampton, VA:AIAA, 1998. |
[11] | 刘小勇. 超燃冲压发动机技术[J]. 飞航导弹, 2003(2):38-42. LIU X Y. Scramjet engine technology[J]. Aerodynamic Missile Journal, 2003(2):38-42(in Chinese). |
[12] | 王玲玲, 嵇阿琳, 崔红, 等. ZrC改性C/C-SiC复合材料的力学和抗烧蚀性能[J]. 复合材料学报, 2016, 33(2):373-378. WANF L L, JI A L, CUI H, et al. Mechanical and anti-ablative performance of C/C-SiC composites modified by ZrC[J]. Acta Materiae Compositae Sinica, 2016, 33(2):373-378(in Chinese). |
[13] | 张强, 赵景鹏, 崔红, 等. C/C-ZrB2-SiC复合材料的制备及其力学性能[J]. 硅酸盐学报, 2016, 44(7):1002-1007. ZHANG Q, ZHAO J P, CUI H, et al. Preparation and mechanical properties of C/C-ZrB2-SiC composites[J]. Journal of the Chinese Ceramic Society, 2016, 44(7):1002-1007(in Chinese). |
[14] | MARIO T, GIULIANO M, TEODORO V. Plasma spray deposition of ultra high temperature ceramics[J]. Surface and Coatings Technology, 2006, 201(5):2103-2108. |
[15] | 杨星, 崔红, 闫联生, 等. 高温处理对PCS裂解SiC基体的微晶形态及C/C-SiC材料性能的影响[J]. 固体火箭技术, 2012, 35(1):127-133. YANG X, CUI H, YAN L S, et al. Effects of high temperature treatment on crystallite morphology of SiC matrix pyrolyzed from PCS and properties of C/C-SiC composites[J]. Journal of Solid Rocket Technology, 2012, 35(1):127-133(in Chinese). |
[16] | 谢志鹏. 结构陶瓷[M]. 北京:清华大学出版社, 2011. XIE Z P. Structural ceramics[M]. Beijing:Tsinghua University Press, 2011(in Chinese). |
[17] | 杨飞宇, 张幸红, 韩杰才, 等. ZrB2-SiC和Cf/ZrB2-SiC超高温陶瓷基复合材料烧蚀机理的研究[J]. 无机材料学报, 2008, 23(4):734-738. YANG F Y, ZHANG X H, HAN J C, et al. Ablation mechanism of ZrB2-SiC and Cf/ZrB2-SiC ultra-high temperature ceramic composites[J]. Journal of Inorganic Materials, 2008, 23(4):734-738(in Chinese). |
[18] | WU H T, XIE C M, ZHANG W G, et al. Fabrication and properties of 2D C/C-ZrB2-ZrC-SiC composites by hybrid precursor infiltration and pyrolysis[J]. Advances in Applied Ceramics, 2013, 112(6):366-373. |
[19] | 周海军, 张翔宇, 高乐, 等. ZrB2-SiC超高温陶瓷涂层的抗烧蚀性能研究[J]. 无机材料学报, 2013, 28(3):256-260. ZHOU H J, ZHANG X Y, GAO L, et al. Ablation properties of ZrB2-SiC ultra-high temperature ceramic coatings[J]. Journal of Inorganic Materials, 2013, 28(3):256-260(in Chinese). |
[20] | ZOU X, FU Q G, LIU L, et al. ZrB2-SiC coating to protect carbon/carbon composites against ablation[J]. Surface and Coatings Technology, 2013, 226:17-21. |
[21] | 陈朝辉. 先驱体转化陶瓷基复合材料的工艺与原理[M]. 北京:科学出版社, 2012. CHEN Z H. Technology and principle of ceramic matrix composites fabricated by polymer-infiltration-pyrolysis[M]. Beijing:Science Press, 2012(in Chinese). |