|
- 2018
聚甲基丙烯酸甲酯@聚丁二烯核壳结构纳米粒子增韧双酚A型氰酸酯树脂性能
|
Abstract:
采用聚甲基丙烯酸甲酯(PMMA)@聚丁二烯(PB)核壳结构粒子增韧双酚A型氰酸酯(BADCy)树脂,制备了PMMA@PB/BADCy树脂。研究结果表明,当PMMA@PB质量分数为6wt%时,可以取得较好的增韧效果,PMMA@PB/BADCy树脂冲击强度达到了14.32 kJ · m-2,提高了83.6%;DMA和TG-DTA耐热性测试结果表明,PMMA@PB的加入未降低树脂耐热性,固化后PMMA@PB/BADCy树脂的玻璃化转变温度为236.8℃,最大热分解温度为410.0℃。SEM和TEM结果表明,PMMA@PB核壳橡胶在BADCy树脂基体中分散性好,PMMA@PB/BADCy树脂破坏断面呈现典型的韧性破坏。PMMA@PB/BADCy树脂流变特性的测试表明,PMMA@PB核壳橡胶加入后基本没有影响到BADCy树脂的流变特性,PMMA@PB/BADCy树脂的最低点黏度为0.79 Pa · s左右,是树脂浸渍纤维的理想黏度。介电性能测试表明,PMMA@PB核壳橡胶增韧BADCy树脂后介电性能影响不大,当PMMA@PB质量分数为6wt%时介电常数为3.0,介电损耗为0.010。该PMMA@PB/BADCy树脂性能优异,可作为预浸料基体树脂,适用于航空航天低介电复合材料的制造。 The polymethyl methacrylate(PMMA)@polybutadiene(PB) core-shell structured nanoparticles toughened bisphenol A-cyanate(BADCy) resin was prepared. The mechanical property results show that the PMMA@PB/BADCy resin presents excellent toughness when 6wt% of PMMA@PB core-shell rubber is used. And the impact strength of the PMMA@PB/BADCy resin with 6wt% of PMMA@PB core-shell rubber is 14.32 kJ·m-2, increased by 83.6%. The thermal performances of toughened resin were investigated by DMA and TG-DTA as well. The results show that when 6wt% of PMMA@PB core-shell rubber is used, the glass transition temperature of the cured PMMA@PB/BADCy resin is 236.8℃ and the temperature of maximum degradation rate is 410.0℃. TEM images show that the PMMA@PB core-shell rubber has good dispersion in BADCy resin. SEM images show that the fracture surface of PMMA@PB core-shell rubber toughened BADCy resin exhibits typical toughness fracture. The rheological properties of the PMMA@PB/BADCy resin show that the PMMA@PB core-shell rubber has insignificant influence on the rheological properties of BADCy resin. The lowest viscosity of the PMMA@PB/BADCy resin is 0.79 Pa·s, which is the ideal viscosity to impregnate fiber for preparing prepreg. The dielectric properties at different frequencies show that the PMMA@PB core-shell rubber has little effect on the dielectric properties of toughened BADCy. When 6wt% PMMA@PB core-shell rubber is used, the dielectric constant is 3.0 and the dielectric loss is about 0.010. The PMMA@PB/BADCy resin system presents excellent performances and can be used as matrix of prepreg. It is suitable for the manufacture of low dielectric composites in aerospace. 哈尔滨市杰出青年人才项目(2016RAYYJ009);黑龙江省科学院杰青基金(CXJQ2017SH01)
[1] | YUAN L, HUANG S, HU Y, et al. Poly (phenylene oxide) modified cyanate resin for self-healing[J]. Polymers for Advanced Technologies, 2014, 25(7):752-759. |
[2] | ARAO Y, FUKUI T, NIWA T, et al. Dimensional stability of epoxy-based and cyanate-based carbon fiber-reinforced plastics[J]. Journal of Composite Materials, 2015, 49(12):1483-1492. |
[3] | WU Z, ZHAO L, QI L, et al. Improved cyanate resin with low dielectric constant and high toughness prepared using inorganic-organic hybrid porous silica[J]. Chemistry Letters, 2016, 46(1):139-142. |
[4] | WANG H, ZHANG J, XU Y, et al. Study on T700/cyanate/PS/epoxy composites with ex-situ toughening technique[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2014, 29(4):674-678. |
[5] | HARVEY B G, GUENTHNER A J, LAI W W, et al. Effects of o-methoxy groups on the properties and thermal stability of renewable high-temperature cyanate ester resins[J]. Macromolecules, 2015, 48(10):3173-3179. |
[6] | WANG Y, KOU K, WU G, et al. The curing reaction of benzoxazine with bismaleimide/cyanate ester resin and the properties of the terpolymer[J]. Polymer, 2015, 77:354-360. |
[7] | WANG Y, KOU K, WU G, et al. The effect of bis allyl benzoxazine on the thermal, mechanical and dielectric properties of bismaleimide-cyanate blend polymers[J]. RSC Advances, 2015, 5(72):58821-58831. |
[8] | LIN Q, QU L, Lü Q, et al. Preparation and properties of graphene oxide nanosheets/cyanate ester resin composites[J]. Polymer Testing, 2013, 32(2):330-337. |
[9] | WANG G, FU G, GAO T, et al. Preparation and characterization of novel film adhesives based on cyanate ester resin for bonding advanced radome[J]. International Journal of Adhesion and Adhesives, 2016, 68:80-86. |
[10] | 刘刚, 张朋, 杨喆, 等. 尼龙无纺布结构化增韧层增韧碳纤维/环氧树脂复合材料的湿热力学性能[J]. 复合材料学报, 2015, 32(6):1633-1640. LIU G, ZHANG P, YANG Z, et al. Hygrothermal mechanical properties of carbon fabric/epoxy composites toughened by structural toughening layer of polyamide non-woven fabric[J]. Acta Materiae Compositae Sinica, 2015, 32(6):1633-1640(in Chinese). |
[11] | 邢丽英, 蒋诗才, 周正刚. 先进树脂基复合材料制造技术进展[J]. 复合材料学报, 2013, 30(2):1-9. XING L Y, JIANG S C, ZHOU Z G. Progress of manufacturing technology development of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2013, 30(2):1-9(in Chinese). |
[12] | 中华人民共和国国家质量监督检验检疫总局. 树脂浇注体性能试验方法:GB/T 2567-2008[S]. 北京:中国标准出版社, 2008. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Test methods for properties of resin casting boby:GB/T 2567-2008[S]. Beijing:China Standards Press, 2008(in Chinese). |
[13] | American Society for Testing and Materials. Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials:ASTM D5045-99[S]. West Conshohocken:ASTM International, 1999. |
[14] | SIMON S L, GILLHAM J K. Cure kinetics of a thermosetting liquid dicyanate ester monomer/high-Tg polycyanurate material[J]. Journal of Applied Polymer Science, 1993, 47(3):461-485. |
[15] | QU C, ZHAO L W, WANG D Z, et al. Bis[4-(4-maleimidephen-oxy) phenyl]propane/N, N-4, 4'-bismaleimidodiphenylmethyene blend modified with diallyl bisphenol A[J]. Journal of Applied Polymer Science, 2014, 131(12):1-8. |
[16] | 邢云亮, 李云涛, 赵春霞, 等. 功能型核壳微球对环氧树脂燃烧性能和力学性能的影响[J]. 高分子材料科学与工程, 2015, 31(1):57-61. XING Y L, LI Y T, ZHAO C X, et al. Effect of functional core-shell microspheres on the combustion performance and mechanical properties of epoxy resin[J]. Polymer Materials Science and Engineering, 2015, 31(1):57-61(in Chinese). |
[17] | 张霄, 娄春华, 李志国, 等. 马来酸酐和pH对PVAc反向核/壳型复合乳液性能的影响[J]. 中国胶粘剂, 2016, 25(7):1-3. ZHANG X, LOU C H, LI Z G, et al. Effects of maleic anhydride and pH on the performance of PVAc reverse core/shell composite emulsion[J]. China Adhesives, 2016, 25(7):1-3(in Chinese). |
[18] | 王结良, 梁国正, 赵雯, 等. 液体端羧基丁腈橡胶增韧改性氰酸酯树脂[J]. 复合材料学报, 2005, 22(1):1-5. WANG J L, LIANG G Z, ZHAO W, et al. Cyanate esters modified by carboxyl-terminated liquid butadiene-acrylonitrile[J]. Acta Materiae Compositae Sinica, 2005, 22(1):1-5(in Chinese). |
[19] | 李文峰, 梁国正, 于秋霞, 等. 适用于RTM在室温传递的低粘度改性氰酸酯树脂研究[J]. 复合材料学报, 2003, 20(5):53-56. LI W F, LIANG G Z, YU Q X, et al. Modified cyanate ester resin matrix suitable for RTM process at ambient temperature[J]. Acta Materiae Compositae Sinica, 2003, 20(5):53-56(in Chinese). |
[20] | 董慧民, 益小苏, 安学锋, 等. 纤维增强热固性聚合物基复合材料层间增韧研究进展[J]. 复合材料学报, 2014, 31(2):273-285. DONG H M, YI X S, AN X F, et al. Development of interleaved fibre-reinforced thermoset polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2):273-285(in Chinese). |
[21] | GU X, ZHANG Z, YUAN L, et al. Developing high performance cyanate ester resin with significantly reduced postcuring temperature while improved toughness, rigidity, thermal and dielectric properties based on manganese-Schiff base hybridized graphene oxide[J]. Chemical Engineering Journal, 2016, 298:214-224. |
[22] | ZHANG Z, LIANG G, WANG X. Epoxy-functionalized polyhedral oligomeric silsesquioxane/cyanate ester resin organic-inorganic hybrids with enhanced mechanical and thermal properties[J]. Polymer International, 2014, 63(3):552-559. |
[23] | 李洪峰, 王德志, 曲春艳, 等. 核壳橡胶增韧环氧/玻璃纤维复合材料层压板性能的研究[J]. 玻璃钢/复合材料, 2014(6):25-29. LI H F, WANG D Z, QU C Y, et al. Study on properties of core-shell rubber toughened epoxy/glass fiber composite laminates[J]. Fiber Reinforced Plastics/Composites, 2014(6):25-29(in Chinese). |
[24] | 王鑫, 王德志, 刘立柱, 等. 纳米核壳橡胶的合成及其对EP的增韧改性[J]. 工程塑料应用, 2016, 44(8):106-110. WANG X, WANG D Z, LIU L Z, et al. Preparation of nano-core-shell rubber and its toughening modification of EP[J]. Application of Engineering Plastics, 2016, 44(8):106-110(in Chinese). |