|
- 2018
冲击作用下斜接修补CFRP层间分层和胶层的损伤机制及参数分析
|
Abstract:
首先,针对斜接修补CFRP抗冲击性能差的问题,分别使用基于接触的内聚力模型(SCZM)和基于单元的内聚力模型(ECZM)描述层间分层和斜接胶层破坏,研究CFRP层板的冲击响应和两种失效的演化规律。然后,分析了冲击能量、斜接角度和预拉伸作用对两种失效的影响。结果表明:层间分层起始时间早于胶层破坏,与冲击能量无关;分层和胶层破坏面积随冲击能量增加而增大,胶层破坏面积增加的更明显;斜接角度主要影响胶层破坏,对分层面积几乎无影响;预拉伸作用对两种失效均具有负面作用。最后,进一步讨论分层对胶层破坏的影响,通过与只考虑胶层破坏的情况进行对比,发现层间分层使胶层破坏的面积降低,延缓了胶层的最终失效。 First, on account of the shortcoming of relative low ability of resistance to the impact load for scarf repaired CFRP, surface based cohesive model(SCZM) and element based cohesive zone model (ECZM) were used to simulate laminates delamination and bondline damage, respectively. The impact response of CFRP and the evolution of two failures were investigated. Then, the influences of the impact energy, scarf angle and pre-tension were studied. Results indicate that the laminates delamination initiates prior to the bondline damage, which is independent of the applied impact energy. The bondline damage area increases much obviously than the laminates delamination with the increasing of impact energy. The scarf angle will significantly influence the bondline damage, while has almost no effect on the laminates delamination area. The pre-tension has negative effect on these two failures. At last, the effect of laminates delamination on bondline damage was further discussed by comparing with the situation that only considered bondline damage. The laminates delamination will reduce the damage area of bondline and delay the catastrophic failure of bondline. 民机预研基金(16Z0317);中央高校基本科研业务费(G2017KY0003)
[1] | WANG C H, GUNNION A J. Optimum shapes of scarf repairs[J]. Composites Part A:Applied Science & Manufacturing, 2009, 40(9):1407-1418. |
[2] | 王裕龙, 许希武, 毛春见. 缝合复合材料层板低速冲击损伤数值模拟[J]. 复合材料学报, 2014, 31(3):715-724. WANG Y L, XU X W, MAO C J. Numerical simulation of damage in fiber reinforced composite laminates under high velocity impact[J]. Acta Materiae Compositae Sinica, 2014, 31(3):715-724(in Chinese). |
[3] | REINOSO J, PAGGI M, BLáZQUEZ A. A nonlinear finite thickness cohesive interface element for modeling delamination in fibre-reinforced composite laminates[J]. Composites Part B:Engineering, 2017, 109:116-128. |
[4] | 姚辽军, 赵美英, 万小朋. 基于CDM-CZM的复合材料补片补强参数分析[J]. 航空学报, 2012, 33(4):666-671. YANG L J, ZHAO M Y, WANG X P. Parameter analysis of composite laminates with patched reinforcement based on CDM-CZM[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4):666-671. |
[5] | ZHANG J, ZHANG X. Simulating low-velocity impact induced delamination in composites by a quasi-static load model with surface-based cohesive contact[J]. Composite Structures, 2015, 125:51-57. |
[6] | KATNAM K B, SILVA L F M D, YOUNG T M. Bonded repair of composite aircraft structures:A review of scientific challenges and opportunities[J]. Progress in Aerospace Sciences, 2013, 61:26-42. |
[7] | HARMAN A B, WANG C H. Improved design methods for scarf repairs to highly strained composite aircraft structure[J]. Composite Structures, 2006, 75(1-4):132-144. |
[8] | WHITTINGHAM B, BAKER A A, HARMAN A, et al. Micrographic studies on adhesively bonded scarf repairs to thick composite aircraft structure[J]. Composites Part A:Applied Science & Manufacturing, 2009, 40(9):1419-1432. |
[9] | CHENG X, BAI G Y, HU R, et al. Study of tensile failure mechanisms in scarf repaired CFRP laminates[J]. International Journal of Adhesion & Adhesives, 2013, 41(1):177-185. |
[10] | LIU B, XU F, FENG W, et al. Experiment and design methods of composite scarf repair for primary-load bearing structures[J]. Composites Part A:Applied Science and Manufacturing, 2016, 88:27-38. |
[11] | 关志东, 刘遂, 郭霞, 等. 含半穿透损伤层合板挖补修理后的拉伸性能[J]. 复合材料学报, 2013, 30(2):144-151. GUAN Z D, LIU S, GUO X, et al. Tensile behavior of scarfing repaired laminates with half-depth damage[J]. Acta Materiae Compositae Sinica, 2013, 30(2):144-151(in Chinese). |
[12] | HAYES-GRISS J M, GUNNION A J, KHATIBI A A. Damage tolerance investigation of high-performance scarf joints with bondline flaws under various environmental, geometrical and support conditions[J]. Composites Part A:Applied Science & Manufacturing, 2016, 84:246-255. |
[13] | 刘斌, 徐绯, 季哲, 等. 改进的复合材料斜接结构胶层应力半解析法[J]. 复合材料学报, 2015, 32(2):526-533. LIU B, XU F, JI Z, et al. Modified semi-analytical method for adhesive stress of scarf joints in composite structure[J]. Acta Materiae Compositae Sinica, 2015, 32(2):526-533(in Chinese). |
[14] | BREITZMAN T D, IARVE E V, COOK B M, et al. Optimization of a composite scarf repair patch under tensile loading[J]. Composites Part A:Applied Science & Manufacturing, 2009, 40(12):1921-1930. |
[15] | YOO J S, TRUONG V H, PARK M Y, et al. Parametric study on static and fatigue strength recovery of scarf-patch-repaired composite laminates[J]. Composite Structures, 2016, 140:417-432. |
[16] | 刘斌, 徐绯, 菊池正纪, 等. 斜胶接CFRP的冲击损伤容限研究[J]. 固体火箭技术, 2015, 38(6):870-876. LIU B, XU F, KIKUCHI M. Study on impact damage tolerance of scarf bonded CFRP[J]. Journal of Solid Rocket Technology, 2015, 38(6):870-876(in Chinese). |
[17] | KIM M K, ELDER D J, WANG C H, et al. Interaction of laminate damage and adhesive disbonding in composite scarf joints subjected to combined in-plane loading and impact[J]. Composite Structures, 2012, 94(3):945-953. |
[18] | LIU S, CHENG X, XU Y, et al. Study on impact performances of scarf-repaired carbon fiber reinforced polymer laminates[J]. Journal of Reinforced Plastics & Composites, 2015, 34:60-71. |
[19] | KIM M K. Impact resistance of composite scarf joints under load[D]. Melbourne:RMIT University, 2010. |
[20] | TAKAHASHI I, TAKEDA S I, IWAHORI Y, et al. Evaluation of the impact damages of scarf-repaired composites[J]. Journal of the Society of Materials Science Japan, 2007, 56(56):414-419. |
[21] | HOSHI H, NAKANO K, IWAHORI Y. Study on repair of CFRP laminates for aircraft structures[C]. Proc 16th Int Conf on composite Mat (ICCM-16), Kyoto, 2007:1-7. |
[22] | ALFANO G. On the influence of the shape of the interface law on the application of cohesive-zone models[J]. Composites Science & Technology, 2006, 66(6):723-730. |
[23] | CAMANHO P P, DáVILA C G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials:NASA/TM-2002-211737[R]. Washington:NASA, 2002. |
[24] | PINHO S T. Modelling failure of laminated composites using physically-based failure models[D]. London:Imperial College London, 2005. |
[25] | STUART D, DONALD K, ALAN B. Composite materials for aircraft structures, second edition[J]. 2004, 43(495):213-223. |