|
- 2018
含脆性界面相的颗粒增强金属基复合材料的损伤
|
Abstract:
通过引入双夹杂模型,将传统增量损伤理论扩展应用到三相复合材料颗粒尺寸效应问题,同时提出一个可以研究颗粒增强金属基复合材料的弹塑性变形及渐进式脱黏损伤模型,该模型还可以研究含脆性界面相的颗粒增强金属基复合材料弹塑性损伤变形行为的颗粒尺寸效应。研究发现,包含各种不同颗粒尺寸的颗粒增强金属基复合材料的脱黏损伤按照颗粒尺寸从大到小的顺序先后发生,并且该模型与SiC/Al复合材料的试验结果比较一致。 A constitutive model of particulate reinforced composites (PRCs) which can describe the evolution of debonding damage, matrix plasticity and particle size effects on deformation and damage was developed. An incremental damage model of PRC based on Mori-Tanaka's mean field concept had been extended to three-phase composites for interpreting particle size effect. The interphase was perfectly incorporated into the present micromechanics model as a third phase with the help of double-inclusion model. Progressive damage was controlled by a critical energy criterion for particle-matrix interfacial separation. Based on the developed model, the influences of progressive debonding damage, particle size and interphase properties on the overall stress-strain response of PRC were discussed. Finally, the particle size effect on the mechanical behaviors of composites was clearly interpreted from the role of the interphase, which was different from all the existing researches. 国家自然科学基金(61303098)
[1] | ESHELLBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the Royal Society of London, 1957, 241(1226):376-396. |
[2] | MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica, 1973, 21(5):571-574. |
[3] | TOHGO K, ITOH T. Elastic and elastic-plastic singular fields around a crack-tip in particulate-reinforced composites with progressive[J]. International Journal of Solids & Structures, 2005, 42(26):6566-6585. |
[4] | DING K, WENG G J. Plasticity of particle-reinforced composites with a ductile interphase[J]. Journal of Applied Mechanics, 1998, 65(3):596-604. |
[5] | HORI M, NEMAT-NASSER S. Double-inclusion model and overall moduli of multi-phase composites[J]. Journal of Engineering Materials & Technology, 1993, 14(3):189-206. |
[6] | FU S Y, FENG X Q, LAUKE B, et al. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer compo-sites[J]. Composites Part B:Engineering, 2008, 39(6):933-961. |
[7] | BOUTALEB S, ZAIRI F, MESBAH A, et al. Micromechanics based modeling of stiffness and yield stress for silica/polymer nanocomposites[J]. International Journal of Solids & Structures, 2009, 46(7-8):1716-1726. |
[8] | MARCADON V, HERVE E, ZAOUI A. Micromechanical modeling of packing and size effects in particulate composites[J]. International Journal of Solids & Structures, 2007, 44(25):8213-8228. |
[9] | LIU H T, SUN L Z. A micromechanics-based elasto-plastic model for amorphous composites with nanoparticle interactions[J]. Journal of Applied Mechanics, 2008, 75(3):519-525. |
[10] | ZHANG W X, LI L X, WANG T J. Interphase effect on the strengthening behavior of particle-reinforced metal matrix composites[J]. Computational Materials Science, 2007, 41(2):145-155. |
[11] | JIANG Y P, TOHGO K, YANG H. Study of the effect of particle size on the effective modulus of polymeric composites on the basis of the molecular chain network microstructure[J]. Computational Materials Science, 2010, 49(2):439-443. |
[12] | DEMIR E, RAABE D, ZAAFARANI N, et al. Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography[J]. Acta Materialia, 2009, 57(2):559-569. |
[13] | TOHGO K, WENG G J. A progressive damage mechanics in particle-reinforced metal-matrix composites under high triaxial tension[J]. Journal of Engineering Materials & Technology, 1994, 116(3):414-420. |
[14] | CHO Y T, TOHGO K, ISHⅡ H. Load carrying capacity of a broken ellipsoidal inhomogeneity[J]. Acta Materialia, 1997, 45(11):4787-4795. |
[15] | LLOYD D J. Particle reinforced aluminium and magnesium matrix composites[J]. Metallurgical Reviews, 1994, 39(1):1-23. |
[16] | KIMA B C, PARKA S W, LEE D G. Fracture toughness of the nano-particle reinforced epoxy composite[J]. Composite Structures, 2008, 86(1-3):69-77. |
[17] | WILLIAMS J J, FLOM Z, AMELL A A, et al. Damage evolution in SiC particle reinforced Al alloy matrix composites by X-ray synchrotron tomography[J]. Acta Materialia, 2010, 58(18):6194-6205. |
[18] | BRARA A, CAMBORDE F, KLEPACZKO J R, et al. Experimental and numerical study of concrete at high strain rates in tension[J]. Mechanics of Materials, 2001, 33(1):33-45. |
[19] | VOLLENBERG P H T, HAAN J W, VEN L J M V D, et al. Particle size dependence of the Young's modulus of filled polymers 2:Annealing and solid-state nuclear magnetic resonance experiments[J]. Polymer, 1989, 30(9):1663-1667. |
[20] | JIANG Y P, TOHGO K, SHIMAMURA Y. A micromechanics model for composites reinforced by regularly distributed particles with an inhomogeneous interphase[J]. Computational Materials Science, 2009, 46(2):507-515. |
[21] | JIANG Y P, GUO W L, YANG H. Numerical studies on the effective shear modulus of particle reinforced composites with an inhomogeneous interphase[J]. Computational Materials Science, 2008, 43(4):724-731. |
[22] | JIANG Y P, YANG H, GUO W L. Numerical study of the influence of particle-cracking to the damage of MMC by the incremental damage theory[J]. Materials Science & Engineering A, 2008, 492(1-2):370-376. |
[23] | CHEN N, GUTIERREZ-MORA F, KORITALA R E, et al. Joining particulate and whisker ceramic composites by plastic flow[J]. Composites Structures, 2002, 57(1-4):135-139. |
[24] | KWON Y W, LIU C T. Study of damage evolution in composites using damage mechanics and micromechanics[J]. Composites Structures, 1997, 38(1-4):133-139. |
[25] | VOYIADJIS G Z, KATTAN P I. Mechanics of small damage in fiber-reinforced composite materials[J]. Composite Structures, 2010, 92(9):2187-2193. |
[26] | NIORDSON C F, TVERGAARD V. Nonlocal plasticity effects on the tensile properties of a metal matrix composite[J]. E European Journal of Mechanics A:Solids, 2001, 20(4):601-613. |
[27] | XUE Z, HUANG Y, LI M. Particle size effect in metallic materials:A study by the theory of mechanism-based strain gradient plasticity[J]. Acta Materialia, 2002, 50(1):149-160. |
[28] | FLECK N A, MULLER G M, AAHBY M F, et al. Strain gradient plasticity:Theory and experiment[J]. Acta Metallurgica et Materialia, 1994, 42(2):475-487. |
[29] | NAN C W, CLARKE D R. The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites[J]. Acta Materialia, 1996, 44(9):3801-3811. |
[30] | NAN C W, YUAN R Z. Multiple-scattering solution to nonlinear mechanical properties of binary elastic-plastic composite media[J]. Physical Review B:Condensed Matter, 1993, 48(5):3042-3047. |
[31] | HU G K, LIU X N, LU T J. A variational method for nonlinear micropolar composites[J]. Mechanics of Materials, 2005, 37(4):407-425. |
[32] | LIU X N, HU G K. A continuum micromechanical theory of overall plasticity for particulate composites including particle size effect[J]. International Journal of Plasticity, 2005, 21(4):777-799. |
[33] | TOHGO K, CHO Y T. Theory of reinforcement damage in discontinuously reinforced composites and its application[J]. Jsme International Journal, 1999, 42(4):521-529. |