|
- 2018
疏水性聚酰亚胺增强SiO2气凝胶复合材料的制备与表征
|
Abstract:
采用化学交联、溶胶-凝胶和表面改性的方法,制得疏水性聚酰亚胺(PI)增强SiO2气凝胶复合材料。以均苯四甲酸二酐(PMDA)和4’,4’-二氨基二苯醚(ODA)为聚合单体,3-氨丙基-三己氧基硅烷(APTES)为封端剂,合成APTES封端的聚酰亚胺,与正硅酸乙酯(TEOS)混合形成前驱体。采用酸碱两步催化凝胶、湿凝胶依次进行表面疏水改性、溶液置换及CO2超临界干燥,得到聚酰亚胺增强SiO2气凝胶复合材料样品。利用FTIR、SEM、比表面积测试仪、万能材料试验机、接触角分析仪等表征样品的化学组成、微观形貌、孔结构、力学性能及疏水性能等。结果表明:PI质量分数为6wt%的样品密度为0.124 g/cm3,比表面积为724 m2/g,平均孔径尺寸为14 nm,接触角为134°,抗压强度为0.295 MPa。20wt%含量的PI增强SiO2气凝胶样品抗压强度为0.556 MPa。 The hydrophobic polyimide (PI) reinforced silica aerogel composite was prepared by the methods of chemical cross-linking, sol-gel and surface modification. The 3-aminopropyltriethoxysilane (APTES) end capped polyimide synthesized from pyromelliticdianhydride (PMDA), 4,4'-oxydianiline (ODA) as the polymer monomers and APTES as the blocking agent, was mixed with tetraethoxysilane (TEOS) to form the precursor. The PI reinforced SiO2 aerogel composite samples were obtained via a technological process of acid/base two-step catalytic, surface hydrophobic modification, solvent exchange and carbon dioxide supercritical fluid drying. The chemical composition, micro-morphology, porous structure, mechanical and hydrophobic properties were studied by the FTIR, SEM, specific surface analyzer, universal testing machine and contact angle analyzer. The results show that the density of PI reinforced SiO2 aerogel composite with 6wt% PI mass fraction is 0.124 g/cm3, the specific surface area is 724 m2/g, the average pore size is 14 nm, the water contact angle is 134° and the compressive strength is 0.295 MPa. When the PI mass fraction is up to 20wt%, the compressive strength of the sample is 0.556 MPa. 国家自然科学基金(51509254;51702364);国家部委基金(417212409)
[1] | PIERRE A C, PAJONK G M. Chemistry of aerogels and their applications[J]. Chemical Reviews, 2002, 102(11):4243-4266. |
[2] | RAO A V, HWGDE N D, HIRASHIMA H. Absorption and desorption of organic liquids in elastic super hydrophobic silica aerogels[J]. Journal of Colloid Interface Science, 2007, 305(1):124-132. |
[3] | YANG J, LI S, LUO Y, et al. Compressive properties and fracture behavior of ceramic fiber-reinforced carbon aerogel under quasi-static and dynamic loading[J]. Carbon, 2011, 49(5):1542-1549. |
[4] | ZHANG G, DASS A, RAWASHDEH A M M, et al. Isocyanate-crosslinked silica aerogel monoliths:Preparation and characterization[J]. Journal of Non-Crystalline Solids, 2004, 350:152-164. |
[5] | CAPADONA L A, MEADOR M A B, ALUNNI A, et al. Flexible, low-density polymer crosslinked silica aerogels[J]. Polymer, 2006, 47(16):5754-5761. |
[6] | 杨海龙, 孔祥明, 曹恩祥, 等. 聚合物改性SiO2气凝胶的常压干燥制备及表征[J]. 复合材料学报, 2012, 29(2):1-9. YANG H L, KONG X M, CAO E X, et al. Preparation and characterization of polymer modified silica aerogels dried under ambient pressure[J]. Acta Materiae Compositae Sinica, 2012, 29(2):1-9(in Chinese). |
[7] | SABRI F, MARCHETTA J, SMITH K M. Thermal conductivity studies of a polyurea cross-linked silica aerogel-RTV 655 compound for cryogenic propellant tank applications in space[J]. Acta Astronautica, 2013, 91:173-179. |
[8] | 闫彭, 周斌, 杜爱, 等. 异氰酸酯增强二氧化硅气凝胶的力学性能[J]. 原子能科学技术, 2014, 48(6):1100-1105. YAN P, ZHOU B, DU A, et al. Mechanical property of silica aerogels reinforced with isocyanate[J]. Atomic Energy Science and Technology, 2014, 48(6):1100-1105(in Chinese). |
[9] | MEADOR M A B, SCHERZER C M, VIVOD S L, et al. Epoxy reinforced aerogels made using a streamlined process[J]. ACS Applied Materials & Interfaces, 2010, 2(7):2162-2168. |
[10] | SHAO Z, WU G, CHENG X, et al. Rapid synthesis of amine cross-linked epoxy and methyl co-modified silica aerogels by ambient pressure drying[J]. Journal of Non-Crystalline Solids, 2012, 358(18):2612-2615. |
[11] | MIRSHAFIEI-LANGARI S A, HADDADI-ASL V, ROGHANI-MAMAQANI H, et al. Synthesis of hybrid free and nanoporous silica aerogel-anchored polystyrene chains via in situ atom transfer radical polymerization[J]. Polymer Composites, 2013, 34(10):1648-1654. |
[12] | MIRSHAFIEI-LANGARI S A, ROGHANI-MAMAQANI H, SOBANI M, et al. In situ atom transfer radical polymerization of styrene in the presence of nanoporous silica aerogel:Kinetic study and investigation of thermal properties[J]. Journal of Polymer Research, 2013, 20(6):doi. org/10.1007/s10965-013-0163-z. |
[13] | WHITE L S, BERTINO M F, KITCHEN G, et al. Shortened aerogel fabrication times using an ethanol-water azeotrope as a gelation and drying solvent[J]. Journal of Materials Chemistry A, 2015, 3(2):762-772. |
[14] | MATSUURA T, YAMADA N, NISHI S, et al. Polyimides derived from 2, 2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl Ⅲ:Properties control for polymer blends and copolymerization of fluorinated polyimides[J]. Macromolecules, 1993, 26(3):419-423. |
[15] | MALEKI H, DUR?ES L, PORTUGAL A. Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications[J]. Microporous and Mesoporous Materials, 2014, 197:116-129. |
[16] | WHITE L S, BERTINO M F, SAEED S, et al. Influence of silica derivatizer and monomer functionality and concentration on the mechanical properties of rapid synthesis cross-linked aerogels[J]. Microporous and Mesoporous Materials, 2015, 217:244-252. |
[17] | PARMENTER K E, MILSTEIN F. Mechanical properties of silica aerogels[J]. Journal of Non-Crystalline Solids, 1998, 223(3):179-189. |
[18] | DORCHEH A S, ABBASI M H. Silica aerogel; synthesis, properties and characterization[J]. Journal of Materials Processing Technology, 2008, 199(1):10-26. |
[19] | 苏高辉, 杨自春, 孙丰瑞. 遮光剂对SiO2气凝胶热辐射特性影响的理论研究[J]. 哈尔滨工程大学学报, 2014, 35(5):642-648. SU G H, YANG Z C, SUN F R. Theoretical study of the opacifier's influence on the thermal radiation characteristics of silica aerogel[J]. Journal of Harbin Engineering University, 2014, 35(5):642-648(in Chinese). |
[20] | AEGERTER M A, LEVENTIS N, KOEBEL M M. Aerogels handbook[M]. New York:Springer-Verlag, 2011. |
[21] | 冯坚, 高庆福, 张长瑞, 等. SiO2溶胶配比对气凝胶隔热复合材料力学性能的影响[J]. 复合材料学报, 2010, 27(6):179-183. FENG J, GAO Q F, ZHANG C R, et al. Effect of SiO2 sol proportion on the mechanical properties of aerogel insulation composites[J]. Acta Materiae Compositae Sinica, 2010, 27(6):179-183(in Chinese). |
[22] | LIAO Y D, WU H J, DING Y F. Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites[J]. Journal of Sol-Gel Science and Technology, 2012, 63(3):445-456. |
[23] | GROSS J, FRICKE J, HRUBESH L W. Sound propagation in SiO2 aerogels[J]. Journal of the Acoustical Society of America, 1992, 91(4):2004-2006. |
[24] | PENG Y, BIN Z, AI D. Synthesis of polyimide cross-linked silica aerogels with good acoustic performance[J]. RSC Advances, 2014, 4(102):59252-59259. |
[25] | 刘光武, 周斌, 倪星元, 等. 复合增强型SiO2气凝胶的一步法快速制备与性能表征[J]. 硅酸盐学报, 2015, 43(7):934-940. LIU G W, ZHOU B, NI X Y, et al. Preparation and characterization of composite SiO2 aerogel by novel one-step modified process[J]. Journal of the Chinese Ceramic Society, 2015, 43(7):934-940(in Chinese). |
[26] | DENG Z S, WANG J, WU A M, et al. High strength SiO2 aerogel insulation[J]. Journal of Non-Crystalline Solids, 1998, 255:101-104. |
[27] | 郭玉超, 马寅魏, 石多奇, 等. 莫来石纤维增强SiO2气凝胶复合材料的力学性能试验[J]. 复合材料学报, 2016, 33(6):1297-1304. GUO Y C, MA Y W, SHI D Q, et al. Mechanical property tests of mullite fiber-reinforced SiO2 aerogel composites[J]. Acta Materiae Compositae Sinica, 2016, 33(6):1297-1304(in Chinese). |
[28] | YUAN B, DING S, WANG D, et al. Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming[J]. Materials Letters, 2012, 75:204-206. |
[29] | MEADOR M A B, VIVOD S L, MCCORKLE L, et al. Reinforcing polymer cross-linked aerogels with carbon nano-fibers[J]. Journal of Materials Chemistry, 2008, 18(16):1843-1852. |
[30] | AHMAD Z, AL-SAGHEER F. Novel epoxy-silica nano-composites using epoxy-modified silica hyper-branched structure[J]. Progress in Organic Coatings, 2015, 80:65-70. |
[31] | 余煜玺, 吴晓云, 伞海生. 常压干燥制备疏水性SiO2-玻璃纤维复合气凝胶及表征[J]. 材料工程, 2015, 43(8):31-36. YU Y X, WU X Y, SAN H S. Preoaration and characterization of hydrophobic SiO2-glass fibers aerogles via ambient pressure drying[J]. Journal of Materials Engineering, 2015, 43(8):31-36(in Chinese). |