全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

苯甲酸功能化石墨烯-Al(OH)3协同阻燃聚丙烯
Synergistic effect of benzoic acid-functionalized graphene-Al(OH)3 on flame retardant of polypropylene

DOI: 10.13801/j.cnki.fhclxb.20171212.001

Keywords: 聚丙烯,Al(OH)3,功能化石墨烯,阻燃性,锥形量热
polypropylene
,Al(OH)3,functionalized graphene,flame retardancy,cone calorie

Full-Text   Cite this paper   Add to My Lib

Abstract:

以氧化石墨(GO)为原料,制备了苯甲酸功能化石墨烯(BFG),采用IR和XRD对BFG结构进行了表征。再将BFG作为阻燃协效剂添加到Al(OH)3/聚丙烯(PP)中,研究不同质量比的BFG与Al(OH)3对PP材料阻燃和力学性能的影响。通过对阻燃BFG-Al(OH)3/PP复合材料进行极限氧指数(LOI)测试、热失重分析、锥形量热分析、拉伸测试及残炭SEM分析,考察BFG-Al(OH)3/PP复合材料的阻燃性能和力学性能。研究结果表明,与其他阻燃PP相比,1.5wt% BFG-38.5wt% Al(OH)3/PP的阻燃和力学性能最佳,LOI可达到24.6%,拉伸强度为20.64 MPa,且其热释放速率峰值和总热释放量比纯PP分别降低了51.5%和18.6%。 The graphene functionalized by benzyl acid (BFG) was prepared based on graphene oxide (GO). The structure and morphology of BFG were characterized by IR and XRD. BFG, as a kind of flame retardant synergist, was added to Al(OH)3/polypropylene (PP), in which Al(OH)3 was used as the flame retardant. The effect of mass ratio of BFG to Al(OH)3 on the flame retardancy and mechanical properties of BFG-Al(OH)3/PP composites was studied. The limiting oxygen index (LOI) test, thermogravimetric analysis, cone calorimetry analysis, tensile test and residual carbon scanning analysis were progressed to investigate the flame retardancy and mechanical properties of BFG-Al(OH)3/PP composites. The results show that the flame retardancy and mechanical properties of 1.5wt%BFG-38.5wt%Al(OH)3/PP composite are the best, whose LOI is 24.6%, tensile strength is 20.64 MPa, respectively, and its thermal release rate peak and total heat release is reduced by 51.5% and 18.6% compared with the pure PP sample, respectively. 辽财指高端人才([2016]864);辽宁省百千万人才工程([2017]62);沈阳市国际合作项目(17-51-6-00);辽宁省高校创新人才计划([2017]053);沈阳市中青年科技创新人才计划(RC170118);沈阳市科技局中西高等材料研究院(18-005-6-04)

References

[1]  邢菊香, 张勇健, 汪根林. 油酸功能化石墨烯的制备及其在聚乙烯中的应用[J]. 工程塑料应用, 2013(5):78-81. XING J X, ZHANG Y J, WANG G L. Preparation of oleic acid functionalized graphene and its application in polyethylene[J]. Engineering Plastics Application, 2013(5):78-81(in Chinese).
[2]  JAHAN M, BAO Q L, YANG J X, et al. Structure-directing role of graphene in the synthesis of metal-organic framework nanowire[J]. Journal of the American Chemical Society, 2010, 132(41):14487-14495.
[3]  中国石油和化学工业协会. 塑料用氧指数法测定燃烧行为第2部分:室温试验:GB/T 2406.2-2009[S]. 北京:中国标准出版社, 2010. China Petroleum and Chemical Industry Association. Plastics:Determination of burning behavior by oxygen index Part 2:Ambient-temperature test:GB/T 2406.2-2009[S]. Beijing:China Standards Press, 2010(in Chinese).
[4]  American Society for Testing and Materials. Standard test method for tensile properties of plastics:ASTM D638-99[S]. West Conshohocken:American Society for Testing and Materials International, 1999.
[5]  周安东, 肖政国, 宋瑛林, 等. 酞菁钴-苯甲酸功能化石墨烯复合材料的制备及非线性光学性能研究[J]. 安徽大学学报(自科版), 2015, 39(6):90-95. ZHOU A D, XIAO Z G, SONG Y L, et al. Preparation of cobalt phthalocyanine-benzoicacid-functionalized graphene composite and its nonlinear optical properties[J]. Journal of Anhui University (Natural Science Edition), 2015, 39(6):90-95(in Chinese).
[6]  杨勇辉, 孙红娟, 彭同江, 等. 石墨烯薄膜的制备和结构表征[J]. 物理化学学报, 2011, 27(3):736-742. YANG Y H, SUN H J, PENG T J, et al. Synthesis and structural characterization of graphene-based membranes[J]. Acta Physico Chimica Sinica, 2011, 27(3):736-742(in Chinese).
[7]  ZHANG J J, HE S H, LV P R, et al. Processing-morphology-property relationships of polypropylene-graphene nanoplatelets composites[J]. Journal of Applied Polymer Science, 2016, 134(8):44486.
[8]  杨保俊, 薛中华, 王百年, 等. 类水滑石的制备与改性及其在聚丙烯阻燃中的应用[J]. 复合材料学报, 2014, 31(2):353-361. YANG B J, XUE Z H, WANG B N, et al. Preparation and modification of layered double hydroxides and application in polypropylene as flame retardant[J]. Acta Materiae Compositae Sinica, 2014, 31(2):353-361(in Chinese).
[9]  卢林刚, 徐晓楠, 王大为, 等. 新型无卤膨胀阻燃聚丙烯的制备及阻燃性能[J]. 复合材料学报, 2013, 30(1):83-89. LU L G, XU X N, WANG D W, et al. Preparation and flame retardancy of intumescent flame-retardant polypro-pylene[J]. Acta Materiae Compositae Sinica, 2013, 30(1):83-89(in Chinese).
[10]  WANG N, HU L D, BABU H V, et al. Effect of tea saponin-based intumescent flame retardant on thermal stability, mechanical property and flame retardancy of natural rubber composites[J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(2):1133-1142.
[11]  WANG N, XU G, WU Y H, et al. The influence of expandable graphite on double-layered microcapsules in intumescent flame-retardant natural rubber composites[J]. Journal of Thermal Analysis and Calorimetry, 2016, 123(2):1239-1251.
[12]  JIN J, WANG H, SHU Z J, et al. Impact of selective dispersion of intumescent flame retardant on properties of polypropylene blends[J]. Journal of Materials Science, 2017, 52(6):3269-3280.
[13]  WANG N, WU Y H, MI L, et al. The influence of silicone shell on double-layered microcapsules in intumescent flame-retardant natural rubber composites[J]. Journal of Thermal Analysis & Calorimetry, 2014, 118(1):349-357.
[14]  WANG N, MI L, WU Y H, et al. Double-layered co-microencapsulated ammonium polyphosphate and mesoporous MCM-41 in intumescent flame-retardant natural rubber composites[J]. Journal of Thermal Analysis & Calorimetry, 2014, 115(2):1173-1181.
[15]  LIU S, FANG Z P, YAN H Q, et al. Superior flame retardancy of epoxy resin by the combined addition of graphene nanosheets and DOPO[J]. RSC Advances, 2016, 6(7):5288-5295.
[16]  CHEN X L, MA C Y, JIAO C M. Synergistic effects between iron-graphene and ammonium polyphosphate in flame-retardant thermoplastic polyurethane[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(2):633-642.
[17]  CAI W, FENG X M, HU W Z, et al. Functionalized graphene from electrochemical exfoliation for thermoplastic polyurethane:Thermal stability, mechanical properties, and flame retardancy[J]. Industrial & Engineering Chemistry Research, 2016, 55(40):10681-10689.
[18]  YUAN B H, SHENG H B, MU X W, et al. Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide[J]. Journal of Materials Science, 2015, 50(16):5389-5401.
[19]  GUI H G, XU P, HU Y D, et al. Synergistic effect of graphene and an ionic liquid containing phosphonium on the thermal stability and flame retardancy of polylactide[J]. RSC Advances, 2015, 5(35):27814-27822.
[20]  DANG L, NAI X Y, DONG Y P, et al. Functional group effect on flame retardancy, thermal, and mechanical properties of organophosphorus-based magnesium oxysulfate whiskers as a flame retardant in polypropylene[J]. RSC Advances, 2017, 7(35):21655-21665.
[21]  ZHENG Z H, LIU Y, ZHANG L, et al. Synergistic effect of expandable graphite and intumescent flame retardants on the flame retardancy and thermal stability of polypropylene[J]. Journal of Materials Science, 2016, 51(12):5857-5871.
[22]  王娜, 栾鸿赫, 张静, 等. 介孔分子筛和Cr2O3协同膨胀阻燃体系对阻燃天然橡胶性能的影响[J]. 复合材料学报, 2017, 34(5):963-969. WANG N, LUAN H H, ZHANG J, et al. Synergistic effects of mesoporous molecular sieve and Cr2O3 with intumesce flame retardant on properties of flame-retarded natural rubber[J]. Acta Materiae Compositae Sinica, 2017, 34(5):963-969(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133