全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

纳米碳形貌对纳米碳/聚乙烯导电复合材料性能的影响
Effect of nano carbon shape on the properties of nano carbon/polyethylene conductive composites

DOI: 10.13801/j.cnki.fhclxb.20180209.008

Keywords: 碳纳米管,石墨烯纳米片,力学性能,导电,流变
carbon nanotubes
,graphene nanosheets,mechanical properties,electricity,rheology

Full-Text   Cite this paper   Add to My Lib

Abstract:

分别以纺锤形碳酸钙表面改性的二维片状石墨烯微片(CGM)和多壁碳纳米管(MWCNTs)作为导电剂填充改性聚乙烯(PE)制备导电复合材料。重点研究了二维或一维纳米碳/PE复合材料形成导电网络时力学与电学性能。CGM/PE或MWCNTs/PE复合材料达到抗静电要求时CGM的质量分数为8wt%,而MWCNTs的质量分数为1wt%。填充8wt% CGM的复合材料表现出优异的综合性能,而填充0.5wt% MWCNTs的复合材料综合力学性能达到最大值还未能达到抗静电要求,达到抗静电要求时MWCNTs/PE复合材料的综合力学性能出现下降趋势。通过形貌及流变学分析了复合材料不同的力学与电学性能的微观作用因素。CGM/PE复合材料流变渗流阈值与导电渗流阈值存在比较好的相关性,MWCNTs/PE复合材料达到流变渗流阈值还不能形成导电网络。结果表明,与二维CGM相比,一维MWCNTs不易均匀分散于聚合物基体中,并降低MWCNTs/PE复合材料的力学性能。 Conductive polyethylene (PE) composites were prepared by using two-dimensional flaky graphene microparticles modified on the surface of spindle shaped calcium carbonate (CGM) and multi-walled carbon nanotubes (MWCNTs) filled PE. The mechanical and electrical properties of the compound system where the conductive network forms by filling with two-dimensional or one-dimensional nano carbon composites were studied. When they arrive at antistatic composite, the mass fraction of the CGM and MWCNTs are 8wt% and 1wt%, respectively. The composite properties of 8wt% CGM show excellent performance, while comprehensive mechanical properties of the MWCNTs/PE composite filled with 0.5wt% MWCNTs reach maximum, when arriving at antistatic appears to decline. The microscopic action factors of different mechanical and electrical properties of nano carbon composites were analyzed by morphology and rheology. There is a good correlation between rheological seepage threshold and conductive seepage threshold for CGM/PE composite. However, the MWCNTs/PE composite that can reach the threshold of rheological seepage can not form conductive network. The results show that one-dimensional MWCNTs is not easily dispersed in the polymer matrix, and reduces the mechanical properties of MWCNTs/PE composites compared with two-dimensional CGM. 江苏省高校重点项目(14KJA430006)

References

[1]  EDA G, EMRAH U H, RUPESINNGHE N, et al. Field emission from graphene based composite thin films[J]. Applied Physics Letters, 2008, 93(23):233502-233505.
[2]  SAITO Y, UEMURA S. Field emission from carbon nanotubes and its application to electron sources[J]. Carbon, 2000, 38(2):169-182.
[3]  RAJATENDU S, MITHUM B, BANDYOPADHYAY S, et al. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites[J]. Progress in Polymer Science:Applied Science and Manufacturing, 2010, 36(5):638-670.
[4]  KESONG H, DHAVAL D K, IKJUM C, et al. Graphene-polymer nano composites for structural and functional applications[J]. Progress in Polymer Science:Applied Science and Manufacturing, 2014, 39(11):1934-1972.
[5]  XIAO Y J, WANG W Y, CHEN X J, et al. Hybrid network structure and thermal conductive properties in poly(vinylidene fiuoride) composites based on carbon nanotubes and graphene nanoplatelets[J]. Composites Part A:Applied Science and Manufacturing, 2016, 90:614-625.
[6]  ACHABY M E, QAISS A. Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes[J]. Materials and Design, 2013, 44:81-89.
[7]  LIU F, ZHANG X B, LI W C, et al. Investigation of the electrical conductivity of HDPE composites filled with bund-lelike MWCNTs[J]. Composites Part A:Applied Science and Manufacturing, 2009, 40(11):1717-1721.
[8]  KAZAKOVA M A, KUZNETSOV V L, SEMIKOLENOVA N V, et al. Comparative study of multi-walled carbon nanotube/polyethylene composites produced via different techniques[J]. Physics State Solid, 2015, 251(12):2437-2443.
[9]  WU D F, LV Q L, FENG S H, et al. Polylactide composite foams containing carbon nanotubes and carbon black:Synergistic effect of filler on electrical conductivity[J]. Carbon, 2015, 95:380-387.
[10]  CHEN J W, CUI X H, ZHU Y T, et al. Design of superior conductive polymer composite with precisely controlling carbon nanotubes at the interface of a co-continuous polymer blend via a balance of π-π interactions and dipole-dipole interactions[J]. Carbon, 2017, 114:441-448.
[11]  XIE S H, LIU Y Y, LI J Y. Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes[J]. Applied Physics Letters, 2008, 92(24):243121-243123.
[12]  JIANG B, PENG B, ZHU A P, et al. Eco-friendly synthesis of graphene nanoplatelets via a carbonation route and its reinforcement for polytetrafluoroethylene composites[J]. Journal of Materials Science, 2018, 53(1):626-636.
[13]  ZHAO X, ZHANG Q H, CHEN D J. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites[J]. Macromolecules, 2010, 43(5):2357-2363.
[14]  WU D F, WU L, ZHOU W, et al. Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks of biodegradable polylactide/carbon nanotube composites[J]. Journal of Polymer Science Part B:Polymer Physics, 2010, 48(4):479-489.
[15]  CAO Z H, SONG P G, FANG Z P, et al. Physical wrapping of reduced graphene oxide sheets by polyethylene wax and its modification on the mechanical properties of polyethylene[J]. Journal of Applied Polymer Science, 2012, 126:1546-1555.
[16]  中华人民共和国国家质量监督检验检疫总局. 塑料拉伸性能试验方法:GB/T 1040-1992[S]. 北京:中国标准出版社, 1992. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Plastics:Determination of tensile properties:GB/T 1040-1992[S]. Beijing:China Standards Press, 1992.
[17]  PANG H, CHEN T, ZHANG J M, et al. An electrically conducting polymer/graphene composite with a very low percolation threshold[J]. Materials Letters, 2010, 64(20):2226-2229.
[18]  DU J, ZHAO L, ZENG Y, et al. Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure[J]. Carbon, 2011, 49(4):1094-1100.
[19]  SUNG Y T, HAN M S, SONG K H, et al. Rheological and electrical properties of polycarbonate/multi-walled carbon nanotube composites[J]. Polymer, 2006, 47(12):4434-4439.
[20]  REN J X, SILVA A S, KRISHNAMOORTI R. Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered-silicate nanocomposites[J]. Macromolecules, 2000, 33(10):3739-3746.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133