|
- 2018
可磁分离Fe3O4/g-C3N4复合材料的制备及其性能
|
Abstract:
为了利用Fe3O4的磁响应性及石墨相C3N4(g-C3N4)优良的光催化活性,首先采用高温热聚合法,以尿素为前驱体制备g-C3N4,然后采用水热法合成了可磁分离Fe3O4/g-C3N4复合材料。利用TEM、XRD、TGA、BET和振动样品磁强计(VSM)等多种测试手段表征分析Fe3O4/g-C3N4复合材料的形貌、晶型结构、比表面积、成分、饱和磁化强度等。通过模拟太阳光下Fe3O4/g-C3N4复合材料光催化吸附降解亚甲基蓝(MB)的实验,评价了Fe3O4/g-C3N4复合材料的吸附性能及光催化性能。结果表明,可磁分离Fe3O4/g-C3N4复合材料具有较大的比表面积,约为71.89 m2/g;且具有较好的磁性,饱和磁化强度为18.79 emu/g,可实现复合材料的分离回收;光照240 min时,Fe3O4/g-C3N4复合材料对MB的去除率为56.54%。所制备的Fe3O4/g-C3N4复合材料具有优良的吸附性能、光催化活性和磁性,并可通过外加磁场进行分离与回收。 In order to utilize the magnetic responsiveness of Fe3O4 and the excellent photocatalytic activity of graphite carbon nitride (g-C3N4), high temperature thermal polymerization method was used to prepare g-C3N4 with urea as a precursor. The magnetic separation Fe3O4/g-C3N4 composite photocatalyst was synthesized by hydrothermal method. The obtained samples were characterized by TEM, XRD, TGA, BET and vibrating sample magnetometer (VSM) to investigate the morphology, crystalline phase, specific surface area, composition and saturation magnetization of Fe3O4/g-C3N4 composites. The adsorption and photocatalytic properties of Fe3O4/g-C3N4 composites were evaluated by the adsorption and photocatalytic degradation of dye methylene blue (MB) under simulated sunlight. The results show that the specific surface area of magnetic separation Fe3O4/g-C3N4 composites is large compared with g-C3N4, up to 71.89 m2/g. Fe3O4/g-C3N4 composites possess good magnetic, and the intensity of saturation magnetic field reaches to 18.79 emu/g, which is enough for magnetic separation and recovery. The removal rate of MB reaches to 56.54% under irradiation for 240 min. Fe3O4/g-C3N4 composites not only exhibit good adsorption and photocatalytic activity and magnetic, but also can be recovered easily by external magnetic field. 国家自然科学地区科学基金(21762038);西北民族大学中央高校基本科研业务费资金(Y17125);西北民族大学中央高校基本科研业务费专项资金(31920170022);西北民族大学引进人才科研项目(2016035);甘肃省重点研发计划项目(17YF1GA014);甘肃省自然科学基金(1506RJZA267);甘肃省科技计划项目(18 JR3RA372)
[1] | FUJISHIMA A, HONDA K. Photolysis-decomposition of water at the surface of an irradiated semiconductor[J]. Nature, 1972, 238(5385):37-38. |
[2] | ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528):269-271. |
[3] | ABBAS M, RAO B P, REDDY V, et al. Fe3O4/TiO2 core/shell nanocubes:Single-batch surfactantless synthesis, characterization and efficient catalysts for methylene blue degradation[J]. Ceramics International, 2014, 40(7):11177-11186. |
[4] | WU C H, KUO C Y, CHEN S T. Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation[J]. Environmental Technology, 2013, 34(17):2513-2519. |
[5] | ZHANG P, MO Z, HAN L, et al. Magnetic recyclable TiO2/multi-walled carbon nanotube nanocomposite:Synthesis, characterization and enhanced photocatalytic activity[J]. Journal of Molecular Catalysis A:Chemical, 2015, 402:17-22. |
[6] | 周琪, 钟永辉, 陈星, 等. 石墨烯/纳米TiO2复合材料的制备及其光催化性能[J]. 复合材料学报, 2014, 31(2):255-262. ZHOU Q, ZHONG Y H, CHEN X, et al. Preparation and photocatalytic activity of graphene/nano TiO2 composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2):255-262(in Chinese). |
[7] | 李小娟, 黄斌, 李小飞, 等. TiO2-Fe3O4/MIL-101(Cr)磁性复合光催化材料的制备及其光催化性能[J]. 复合材料学报, 2017, 34(7):1596-1602. LI X J, HUANG B, LI X F, et al. Preparation and photocatalytic activity of magnetic TiO2-Fe3O4/MIL-101(Cr) composites[J]. Acta Materiae Compositae Sinica, 2017, 34(7):1596-1602(in Chinese). |
[8] | WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1):76-80. |
[9] | LIU W, WANG M, XU C, et al. Significantly enhanced visible-light photocatalytic activity of g-C3N4 via ZnO modification and the mechanism study[J]. Journal of Molecular Catalysis A:Chemical, 2013, 368-369:9-15. |
[10] | LIAO G, CHEN S, QUAN X, et al. Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation[J]. Journal of Materials Chemistry, 2012, 22(6):2721-2726. |
[11] | MA H A, JIA X P, CHEN L X, et al. High-pressure pyrolysis study of C3N6H6:A route to preparing bulk C3N4[J]. Journal of Physics Condensed Matter, 2002, 14(44):11269-11273. |
[12] | 陈齐, 史振涛, 许士洪. 溶剂热法合成石墨相氮化碳纳米球[J]. 东华大学学报(自然科学版), 2016, 42(3):395-399. CHEN Q, SHI Z T, XU S H. Synthesis of graphite carbon nitride nanoball by solvothermal method[J]. Journal of Donghua University (Natural Science), 2016, 42(3):395-399(in Chinese). |
[13] | CUI Y, ZHANG J, ZHANG G, et al. Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry, 2011, 21(34):13032-13039. |
[14] | MO Z L, ZHANG C, GUO R B, et al. Synthesis of Fe3O4 nanoparticles using controlled ammonia vapor diffusion under ultrasonic irradiation[J]. Industrial & Engineering Chemistry Research, 2011, 50(6):3534-3539. |
[15] | ZHOU H, ZHANG C, WANG X, et al. Fabrication of TiO2-coated magnetic nanoparticles on functionalized multi-walled carbon nanotubes and their photocatalytic activity[J]. Synthetic Metals, 2011, 161(21):2199-2205. |
[16] | ZHU B, XIA P, HO W, et al. Isoelectric point and adsorption activity of porous g-C3N4[J]. Applied Surface Science, 2015, 344:188-195. |
[17] | WANG H, LI J, MA C, et al. Melamine modified P25 with heating method and enhanced the photocatalytic activity on degradation of ciprofloxacin[J]. Applied Surface Science, 2015, 329:17-22. |
[18] | TIAN N, HUANG H, GUO Y, et al. Ag-C3N4/Bi2O2CO3 composite with high visible-light-driven photocatalytic activity for rhodamine B degradation[J]. Applied Surface Science, 2014, 322:249-254. |
[19] | AKPAN U G, HAMEED B H. The advancements in sol-gel method of doped-TiO2 photocatalysts[J]. Applied Catalysis A:General, 2010, 375(1):1-11. |
[20] | YE W, SHAO Y, HU X, et al. Highly enhanced photo-reductive degradation of polybromodiphenyl ethers with g-C3N4/TiO2 under visible light irradiation[J]. Nanomaterials, 2017, 7(4):DOI:10.3390/nano7040076. |
[21] | 崔言娟, 王愉雄, 王浩, 等. 热聚合硫氰酸铵制备多孔g-C3N4纳米片及其可见光催化分解水制氢性能[J]. 催化学报, 2016, 37(11):1899-1906. CUI Y J, WANG Y X, WANG H, et al. Polycondensation of ammonium thiocyanate into novel porous g-C3N4 nanosheets as photocatalysts for enhanced hydrogen evolution under visible light irradiation[J]. Chinese Journal of Catalysis, 2016, 37(11):1899-1906(in Chinese). |
[22] | 张永平, 顾有松, 高鸿钧, 等. 微波等离子体化学气相沉积法制备C3N4薄膜的结构研究[J]. 物理学报, 2001, 50(7):1396-1400. ZHANG Y P, GU Y S, GAO H J, et al. Structural characterization of C3N4 thin films synthesized by microwave plasma chemical vapor deposition[J]. Acta Physica Sinica, 2001, 50(7):1396-1400(in Chinese). |
[23] | 徐梦秋, 柴波, 闫俊涛, 等. MoS2/g-C3N4复合材料的制备及可见光催化性能[J]. 无机化学学报, 2017, 33(3):389-395.XU M Q, CHAI B, YAN J T, et al. Synthesisand visible light photocatalytic performance of MoS2/g-C3N4 composites[J]. Journal of Inorganic Materials, 2017, 33(3):389-395(in Chinese). |
[24] | SAJJADI M, NASROLLAHZADEH M, SAJADI S M. Green synthesis of Ag/Fe3O4, nanocomposite using Euphorbia peplus Linn, leaf extract and evaluation of its catalytic activity[J]. Journal of Colloid and Interface Science, 2017, 497:1-13. |
[25] | 张芬, 柴波, 廖翔, 等. RGO/C3N4复合材料的制备及可见光催化性能[J]. 无机化学学报, 2014, 30(4):821-827. ZHANG F, CHAI B, LIAO X, et al. Preparation and visible light photocatalytic properties of RGO/C3N4 composites[J]. Chinese Journal of Inorganic Chemistry, 2014, 30(4):821-827(in Chinese). |
[26] | ZHANG P, MO Z L, HAN L J, et al. Preparation and photocatalytic performance of magnetic TiO2/montmorillonite/Fe3O4 nanocomposites[J]. Industrial & Engineering Chemistry Research, 2014, 53(19):8057-8061. |
[27] | XU A W, GAO Y, LIU H Q. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles[J]. Journal of Catalysis, 2002, 207(2):151-157. |
[28] | 徐如人, 庞文琴, 于吉红, 等. 分子筛与多孔材料化学[M]. 北京:科学出版社, 2004. XU R R, PANG W Q, YU J H, et al. Chemistry zeolites and porous materials[M]. Beijing:Science Press, 2004(in Chinese). |
[29] | 李宪华, 张雷刚, 王雪雪, 等. 界面聚合法制备PANI/g-C3N4复合催化剂及其热稳定性和可见光催化性能[J]. 物理化学学报, 2015, 31(4):764-770. LI X H, ZHANG L G, WANG X X, et al. PANI/g-C3N4 composites synthesized by interfacial polymerization and their thermal stability and photocatalytic activity[J]. Acta Physico-Chimica Sinica, 2015, 31(4):764-770(in Chinese). |
[30] | LIU H F, JIA Z G, JI S F, et al. Synthesis of TiO2/SiO2@Fe3O4 magnetic microspheres and their properties of photocatalytic degradation dyestuff[J]. Catalysis Today, 2011, 175(1):293-298. |