|
- 2016
Mn、N共掺杂TiO2负载竹质活性炭纤维的制备及可见光光催化性能
|
Abstract:
为研究Mn、N共掺杂TiO2负载竹质活性炭纤维(Mn-N/TiO2-BACF)的可见光光催化性能,首先,以MnSO4·H2O为锰源,尿素为氮源,采用溶胶-凝胶法制备了光催化复合材料Mn-N/TiO2-BACF;然后,利用SEM、XRD及XPS等考察了煅烧温度对Mn-N/TiO2-BACF结构和可见光光催化性能的影响。结果表明:Mn、N共掺杂使光催化复合材料的光响应范围由紫外光区域拓宽至可见光区域;随煅烧温度的提高,光催化复合材料表面的晶格氧含量逐渐降低,吸附氧含量先降低后增加,而羟基氧含量有所增加;光照400 min后,350℃锻烧制备的Mn-N/TiO2-BACF在可见光下对亚甲基蓝的光降解率达99.7%。同时,还发现Mn-N/TiO2-BACF在可见光下的光降解率与煅烧温度没有相关性。 In order to investigate the visible light photocatalytic properties of Mn-N co-doped TiO2 loaded bamboo based activated carbon fibers (Mn-N/TiO2-BACF), using MnSO4·H2O as manganese source and urea as nitrogen source, photocatalytic composites Mn-N/TiO2-BACF were prepared by sol-gel method firstly. Then, the effects of calcination temperature on the structure and visible light photocatalytic properties of Mn-N/TiO2-BACF were investigated by SEM, XRD and XPS etc. The results indicate that the photoresponse edge of photocatalytic composites extends from ultraviolet light region to visible light region upon Mn-N co-doping. With increasing calcination temperature, the lattice oxygen content on the surfaces of photocatalytic composites decrease gradually, absorbed oxygen content decreases firstly and then increases, while hydroxyl oxygen content increases. After illuminating for 400 min, the photodegradation ratio for methylene blue of Mn-N/TiO2-BACF prepared by calcined at 350℃ reaches 99.7% under visible light. Moreover, it is also found that the photodegradation rate of Mn-N/TiO2-BACF under visible light has no correlation with calcination temperature. 国家自然科学基金(31270607)
[1] | ANPO M, TAKEUCHI M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J]. Journal of Catalysis, 2003, 216(1-2):505-516. |
[2] | 陈印, 马晓军. 改性TiO2负载活性炭纤维的研究进展[J]. 生物质化学工程, 2014, 48(4):40-44. CHEN Y, MA X J. Research progress of modification of TiO2 loaded on activated carbon fibers[J]. Biomass Chemical Engineering, 2014, 48(4):40-44(in Chinese). |
[3] | 周琪, 钟永辉, 陈星, 等. 石墨烯/纳米TiO2复合材料的制备及其光催化性能[J]. 复合材料学报, 2014, 31(2):255-262. ZHOU Q, ZHONG Y H, CHEN X, et al. Preparation and photocatalytic activity of graphene/nano TiO2 composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2):255-262(in Chinese). |
[4] | ZHAO L, YU Y, SONG L, et al. Synthesis and characterization of nanostructured titania film for photocatalysis[J]. Applied Surface Science, 2005, 239(3-4):285-291. |
[5] | MAGAGNIN L, BERNASCONI R, LEFFA S. Coatings by electrodeposition of silver/TiO2 nano-composites[J]. ECS Transactions, 2013, 45(1):1-6. |
[6] | LI D, MA X. Preparation and characterization of activated carbon fibers from liquefied wood[J]. Cellulose, 2013, 20(4):1649-1656. |
[7] | MA X, LIU X, YU L, et al. The microstructure and adsorption property of bamboo based activated carbon fibers prepared by liquefaction and curing[J]. Wood and Fiber Science, 2014, 46(2):291-299. |
[8] | MA X, ZHANG F, ZHU J, et al. Preparation of highly developed mesoporous activated carbon fiber from liquefied wood using wood charcoal as additive and its adsorption of methylene blue from solution[J]. Bioresource Technology, 2014, 164:1-6. |
[9] | WONYONG C, ANDREAS T, MICHAEL R H. The role of metal ion dopants in quantum-sized TiO2:Correlation between photoreactivity and charge carrier recombination dynamics[J]. The Journal of Physical Chemistry, 1994, 98(51):13669-13679. |
[10] | 马晓军, 田芝凡. Mn掺杂TiO2负载竹质活性炭纤维的制备及可见光光催化性能研究[J]. 功能材料, 2015, 46(13):13001-13005. MA X J, TIAN Z F. Preparation of Mn-doped TiO2 loaded on bamboo based activated carbon fibers and its visible light photocatalytic properties[J]. Journal of Functional Materials, 2015, 46(13):13001-13005(in Chinese). |
[11] | RUBY C, ASHAVANI K, RAM P C. Structural and photocatalytic studies of Mn doped TiO2 nanoparticles[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2012, 98:256-264. |
[12] | 李冬娜, 马晓军. 活性炭材料负载纳米TiO2的应用研究进展[J]. 林产化学与工业, 2013, 33(4):149-154. LI D N, MA X J. Research progress of activated carbon material supported by nano-TiO2[J]. Chemistry and Industry of Forest Products, 2013, 33(4):149-154(in Chinese). |
[13] | 安兴才, 刘刚, 韩立娟, 等. V-N共掺杂TiO2/凹凸棒土光催化复合材料的制备及光催化性能[J]. 复合材料学报, 2014, 31(2):423-428. AN X C, LIU G, HAN L J, et al. Preparation and photocatalytic properties of V-N co-doped TiO2/attapulgite photocatalytic composite materials[J]. Acta Materiae Compositae Sinica, 2014, 31(2):423-428(in Chinese). |
[14] | CHEN X, BURDA C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials[J]. Journal of the American Chemical Society, 2008, 130(15):5018-5019. |
[15] | ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528):269-271. |
[16] | LINSEBIGLER A L, LU G Q, YATES J T. Photocatalysis on TiO2 surfaces:Principles, mechanisms, and selected results[J]. Chemical Reviews, 1995, 95(3):735-758. |