|
- 2016
纳米ZnO/低密度聚乙烯复合材料的介电特性
|
Abstract:
为探讨纳米ZnO/低密度聚乙烯(LDPE)复合材料的介电特性,首先,采用硅烷偶联剂和钛酸酯偶联剂对纳米ZnO进行改性,并利用两步法制备了不同纳米ZnO质量分数、不同纳米ZnO粒径、不同纳米ZnO表面修饰方式和不同冷却方式的纳米ZnO/LDPE复合材料;然后,通过FTIR、SEM、DSC和热激电流(TSC)测试了纳米ZnO在基体中的分散情况、复合材料的等温结晶过程参数变化及陷阱密度;最后,在不同实验温度下分别进行了交流击穿、绝缘电导率、介电常数和空间电荷实验。结果表明:纳米ZnO的加入使纳米ZnO/LDPE复合材料内部陷阱深度和密度均有所增加;当纳米ZnO的粒径为40 nm且质量分数为3%时,复合材料的结晶速度最快,纳米ZnO在基体中的分散性较好,击穿场强达到最高值133.3 kV/mm,电导率及介电常数也相对较低,加压时复合材料内部空间电荷少,短路时释放电荷速度快,介电性能较好;由于纳米粒子增加了材料内部的热传导速率,降低了复合材料随着温度升高而降解的速度,因而相对于纯LDPE,随着实验温度的提高,纳米ZnO/LDPE复合材料的击穿场强下降幅度及电导率上升幅度均较小。 In order to investigate dielectric properties of nano ZnO/low density polyethylene (LDPE) composites, silane coupling agent and titanium acid ester coupling agent were used to modify nano ZnO, and nano ZnO/LDPE composites with different nano ZnO mass fractions, different nano ZnO particles sizes, different nano ZnO surface modification methods and different cooling methods were prepared by two step method. Then, the dispersion situations of nano ZnO in the matrix, the parameter changings during isothermal crystallization process and trap densities of the composites were investigated by FTIR, SEM, DSC and thermally stimulated current (TSC). Finally, alternate current breakdown, insulation conductivity, permittivity and space charge experiments were conducted under different experimental temperatures respectively. The results show that both the depth and density of trap in nano ZnO/LDPE composites increase due to the addition of nano ZnO. When the particle size of nano ZnO is 40 nm and the mass fraction is 3%, the crystallization rate of the composite is the fastest, the dispersibility of nano ZnO in the matrix is better, the breakdown field strength reaches the highest value 133.3 kV/mm, the conductivity and the dielectric constant are relatively lower, the space charge in the composite is less when voltage application, and the discharge speed is fast when short circuit, and the dielectric properties are better. Since nano particles increase the thermal conduction rate in material and decrease the rate of composites degrading with the temperature increasing, thus comparing with pure LDPE, with experimental temperature rising, the reducing amplitude of breakdown strength and the increasing amplitude of conductivity of nano ZnO/LDPE composites are both smaller. 国家自然科学基金(51077029);国家“973”计划(2012CB723308)
[1] | 张晓虹, 高俊国, 郭宁, 等. 纳米蒙脱土对聚乙烯击穿和电导特性的影响[J]. 高电压技术, 2009, 35(1):129-134. ZHANG X H, GAO J G, GUO N, et al. Influences of nano-montmorillonite on break down and electrical conductivity of polyethylene[J]. High Voltage Engineering, 2009, 35(1):129-134(in Chinese). |
[2] | 兰莉, 吴建东, 纪哲强, 等. 纳米SiO2/低密度聚乙烯复合介质的击穿特性[J]. 中国电机工程学报, 2012, 32(13):123-143. LAN L, WU J D, JI Z Q, et al. Breakdown properties of nano-SiO2/LDPE composite[J]. Proceedings of the CSEE, 2012, 32(13):123-143(in Chinese). |
[3] | 高俊国. PE/MMT纳米复合材料结构形态与电击穿性能机理研究[D]. 哈尔滨:哈尔滨理工大学, 2009:7-15. GAO J G. Investigation on mechanism of electrical breakdown property and morphology of PE/MMT nanocomposites[D]. Harbin:Harbin University of Science and Technology, 2009:7-15(in Chinese). |
[4] | 王国宏, 李定或. 纳米ZnO的表面改性研究[J]. 湖北师范学院学报, 2004, 24(1):10-14. WANG G H, LI D H. Surface modification of nanometer ZnO[J]. Journal of Hubei Normal University, 2004, 24(1):10-14(in Chinese). |
[5] | 崔小明, 陈天舒. 纳米氧化锌的制备及表面改性技术进展[J]. 橡胶科技市场, 2010, 8(13):9-14. CUI X M, CHEN T S. Progress on preparation and surface modification technologies of nano-zinc oxide[J]. China Rubber Science and Technology Market, 2010, 8(13):9-14(in Chinese). |
[6] | SHAH K S, JAIN R C, SHRINET V, et al. High density polyethylene (HDPE) clay nanocomposite for dielectric applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 6(3):853-861. |
[7] | ALAPATI S, THOMAS M J. Electrical treeing and the associated PD characteristics in LDPE nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(2):697-704. |
[8] | 聂鹏, 赵学增, 陈芳, 等. 聚合物基纳米复合材料制备方法的研究进展[J]. 哈尔滨工业大学学报, 2005, 37(5):594-598. NIE P, ZHAO X Z, CHEN F, et al. Advances on polymer nanocomposites preparation[J]. Journal of Harbin Institute of Technology, 2005, 37(5):594-598(in Chinese). |
[9] | 朱诚身. 聚合物结构分析[M]. 北京:科学出版社, 2004:21-45. ZHU C S. The polymer structure analysis[M]. Beijing:Science Press, 2004:21-45(in Chinese). |
[10] | IEDA M, MIZUTANI T, SUZUOKI Y. TSC and TL studies of carrier trapping in insulating polymers[J]. Memoirs of the Faculty of Engineering in Nagoya University in Japan, 1980, 32(2):173-219. |
[11] | IEDA M, NAGAO M, HIKIT M. High-field conduction and breakdown in insulating polymers:Present situation and future prospects[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5):934-945. |
[12] | 程羽佳, 郭宁, 王若石, 等. 纳米ZnO和纳米MMT对低密度聚乙烯介电性能的影响[J]. 复合材料学报, 2015, 32(1):94-100. CHENG Y J, GUO N, WANG R S, et al. Effects of nano-ZnO and nano-montmorillonite on dielectric properties of low density polyethylene[J]. Acta Materiae Compositae Sinica, 2015, 32(1):94-100(in Chinese). |
[13] | MICHAEL G D, TANAKA T. Nano composites-A review of electrical treeing and breakdown[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 25(4):19-25. |
[14] | MA D L, HUGENER T A, SIEGEL R W, et al. Influence of nanoparticle surface modification on the electrical behaviour of polyethylene nanocomposites[J]. Nanotechnology, 2005, 16(6):724-731. |
[15] | STERNITZKE M, DERBY B, BROOK R J. Alumina/silicon carbide nanocomposites by hybrid polymer/powder processing:Microstructures and mechanical properties[J]. Journal of the American Ceramic Society, 1998, 81(1):41-48. |
[16] | ROY R, KOMAMENI S, ROY D M. Multi-phase ceramic composites made by sol-gel technique[C]//MRS Proceedings. Cambridge:Cambridge University Press, 1984, 32:347-359. |
[17] | 王璞玉, 胡旭晓, 周洁, 等. 聚合物基复合材料导热模型的研究现状及应用[J]. 材料导报, 2010, 24(9):108-112. WANG P Y, HU X X, ZHOU J, et al. Research progress and application of thermal conductivity models for polymer matrix composite[J]. Materials Review, 2010, 24(9):108-112(in Chinese). |
[18] | 罗杨, 吴广宁, 彭佳, 等. 聚合物纳米复合电介质的界面性能研究进展[J]. 高电压技术, 2012, 38(9):2455-2464. LUO Y, WU G N, PENG J, et al. Research progress on interface properties of polymer nanodielectrics[J]. High Voltage Engineering, 2012, 38(9):2455-2464. |
[19] | TANAKA T. Dielectric nano-composites with insulating properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(5):914-928. |
[20] | 田付强. 聚乙烯基无机纳米复合电介质的陷阱特性与电性能研究[D]. 北京:北京交通大学, 2012:34-42. TIAN F Q. Investigation on the trap characteristics and electrical properties of polyethylene based nanocomposite[D]. Beijing:Beijing Jiaotong University, 2012:34-42(in Chinese). |
[21] | 刘佳银. PE/MMT纳米复合物树枝化性能与机理研究[D]. 哈尔滨:哈尔滨理工大学, 2008:6-11. LIU J Y. Investigation on property and mechanism of electrical tree of polyethylene/montmorillonite nanocomposites[D]. Harbin:Harbin University of Science and Technology, 2008:6-11(in Chinese). |
[22] | 张璐璐. ZnO纳米粒子的制备表面修饰及光催化性能的研究[D]. 哈尔滨:哈尔滨工程大学, 2007. ZHANG L L. Preparation and surface modification and photocatalytic property of ZnO nanosparticles[D]. Harbin:Harbin Engineering University, 2007(in Chinese). |
[23] | 张陆旻, 戴干策. 聚丙烯/纳米ZnO复合材料的力学性能及热性能[J]. 华东理工大学学报(自然科学版), 2010, 35(1):66-72. ZHANG L M, DAI G C. Mechanical and thermal properties of polypropylene/ZnO composite[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2010, 35(1):66-72(in Chinese). |
[24] | TJONG S C, LIANG G D. Electrical properties of low-density polyethylene/ZnO nanocomposites[J]. Materials Chemistry and Physics, 2006, 100(1):1-5. |
[25] | TANAKA T. Interpretation of several key phenomena peculiar to nano dielectrics in terms of a multi-core model[C]//Proceedings of 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena. Piscataway:IEEE, 2006:298-301. |
[26] | TANAKA Y, CHEN G, ZHAO Y, et al. Effect of additives on morphology and space charge accumulation in low density polyethylene[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(1):148-154. |