全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

Al6Si2O13晶须和TiC颗粒复合强化多孔Al2TiO5基复合材料
Al6Si2O13 whiskers and TiC particles co-strengthing porous Al2TiO5 matrix composites

DOI: 10.13801/j.cnki.fhclxb.20151022.003

Keywords: Al2TiO5,SiCw,Al6Si2O13晶须,TiC,强化机制,抗压强度
Al2TiO5
,SiCw,Al6Si2O13 whiskers,TiC,strengthening mechanism,compressive strength

Full-Text   Cite this paper   Add to My Lib

Abstract:

以γ-AlOOH和TiO2为原料,添加不同质量分数SiC晶须(SiCw),采用无压反应烧结法制备多孔(Al6Si2O13+TiC)/Al2TiO5复合材料,分析了SiCw质量分数对(Al6Si2O13+TiC)/Al2TiO5复合材料孔隙率和抗压强度的影响,讨论了SiCw的强化机制。结果表明:不添加SiCw时,产物主要为Al2TiO5和少量Al2O3,还有少量未反应的TiO2;加入SiCw之后,还形成了Al6Si2O13和TiC相,TiC和Al6Si2O13分别以规则颗粒状和晶须形态存在于Al2TiO5基体中。TiC颗粒与Al6Si2O13晶须通过细化显微组织、裂纹偏转和晶须桥连机制,起到协同强化作用。SiCw的添加使孔隙率和抗压强度同时大幅度提高,随着SiCw质量分数的增加,(Al6Si2O13+TiC)/Al2TiO5复合材料孔隙率降低,抗压强度提高的速率减小,当SiCw的质量分数为7.2%时,抗压强度最高,达到301.81 MPa。 Porous (Al6Si2O13+TiC)/Al2TiO5 composites were fabricated by pressless reaction sintering method with γ-AlOOH, TiO2 as raw materials and adding different mass fractions of SiC whiskers (SiCw). The effect of SiCw mass fraction on the porosity and compressive strength of (Al6Si2O13+TiC)/Al2TiO5 composites was analyzed, and the strengthening mechanism of SiCw was discussed. The results show that, the product without SiCw is composed of Al2TiO5, a small amount of Al2O3, and a few of unreacted TiO2. After adding SiCw, Al6Si2O13 and TiC phases are formed. Moreover, TiC and Al6Si2O13 exist in Al2TiO5 matrix mainly with regularly particles and whiskers morphology respectively. TiC particles and Al6Si2O13 whiskers synergeticly reinforce composites by refining the microstructure, crack deflecting and whiskers bridging effects. Both porosity and compressive strength improve with the addition of SiCw. With the increasing of SiCw mass fraction, the porosity of (Al6Si2O13+TiC)/Al2TiO5 composites decreases, but the increasing rate of compressive strength slows down gradually. When SiCw mass fraction is 7.2%, the compressive strength is highest, which can reach 301.81 MPa. 国家“863”计划(2015AA034404);国家自然科学基金(51272141);山东省泰山学者计划(TS20110828)

References

[1]  LOW M, LAWRENCE D, SMITH R I. Factors controlling the thermal stability of aluminum titanate ceramics in vacuum[J]. Journal of the American Ceramic Society, 2005, 88(10):2957-2961.
[2]  刘智恩, 赵庆敏, 袁建君. 添加剂对热压钛酸铝陶瓷性能与结构的影响[J]. 无机材料学报, 1995, 10(4):433-438. LIU Z E, ZHAO Q M, YUAN J J. Effects of additives on the properties and structures of hot pressing aluminium titanate ceramics[J]. Journal of Inorganic Materials, 1995, 10(4):433-438(in Chinese).
[3]  JAYASANKAR M, ANANTHAKUMAR S, MUKUNDAN P, et al. Al2O3@TiO2-A simple sol-gel strategy to the synthesis of low temperature sintered alumina-aluminium titanate composites through a core-shell approach[J]. Journal of Solid State Chemistry, 2008, 181(10):2748-2754.
[4]  MENG B, PENG J H. Effects of in situ synthesized mullite whiskers on flexural strength and fracture toughness of corundum-mullite refractory materials[J]. Ceramics International, 2013, 39(2):1525-1531.
[5]  PRATAPA S, UMAROH K, WEDDAKARTI E. Microstructural and decomposition rate studies of periclase-added aluminum titanate-corundum functionally-graded materials[J]. Materials Letters, 2011, 65(5):854-856.
[6]  PERERA F H, PAJARES A, MELENDEZ J J. Strength of aluminium titanate/mullite composites containing thermal stabilizers[J]. Journal of the European Ceramic Society, 2011, 31(9):1695-1701.
[7]  REZAIE H R, NAGHIZADEH R, FARROKHNIA N, et al. The effect of Fe2O3 addition on tialite formation[J]. Ceramics International, 2009, 35(2):679-684.
[8]  JIANG L, CHEN X Y, HAN G M, et al. Effect of additives on properties of aluminium titanate ceramics[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(7):1574-1579.
[9]  ZAN Q F, DONG L M, WANG C, et al. Improvement of mechanical properties of Al2O3/Ti3SiC2 multilayer ceramics by adding SiC whiskers into Al2O3 layers[J]. Ceramics International, 2007, 33(3):385-388.
[10]  WU P, ZHENG Y, ZHAO Y L, et al. Effect of SiC whisker addition on the microstructures and mechanical properties of Ti(C, N)-based cermets[J]. Materials & Design, 2011, 32(2):951-956.
[11]  刘顾, 汪刘应, 陈桂明, 等. SiC-CNTs/Al2O3-TiO2复合涂层的制备及其性能[J]. 无机材料学报, 2011, 26(11):1187-1192. LIU G, WANG L Y, CHEN G M, et al. Preparation and properties of SiC-CNTs/Al2O3-TiO2 coating[J]. Journal of Inorganic Materials, 2011, 26(11):1187-1192(in Chinese).
[12]  SHE J H, OHJI T. Porous mullite ceramics with high strength[J]. Journal of Marerials Science Letters, 2002, 21(23):1833-1834.
[13]  刘智恩, 袁建君, 方玉. 钛酸铝基陶瓷复合材料的研究[J]. 硅酸盐学报, 1995, 23(3):279-285. LIU Z E, YUAN J J, FANG Y. The research of aluminium titanate ceramic composite[J]. Journal of the Chinese Ceramic Society, 1995, 23(3):279-285(in Chinese).
[14]  YIN Z B, HUANG C Z, ZOU B, et al. Study of the mechanical properties, strengthening and toughening mechanisms of Al2O3/TiC micro-nano-composite ceramic tool material[J]. Materials Science and Engineering:A, 2013, 577:9-15.
[15]  LIANG H Q, YAO X M, ZHANG H, et al. In situ toughening of pressureless liquid phase sintered α-SiC by using TiO2[J]. Ceramics International, 2014, 40(7):10699-10704.
[16]  王海龙, 汪长安, 张锐, 等. 纳米SiC晶须和SiC颗粒混合增韧ZrB2陶瓷性能[J]. 复合材料学报, 2009, 26(4):95-101. WANG H L, WANG C A, ZHANG R, et al. Properties of ZrB2 ceramics reforced by SiC nanowhiskers and SiC particles[J]. Acta Materiae Compositae Sinica, 2009, 26(4):95-101(in Chinese).
[17]  李书海, 崔洪芝, 郑文龙, 等. SiCw对反应烧结多孔Al2TiO5-SiCw复合材料的影响[J]. 复合材料学报, 2014, 31(5):1270-1276. LI S H, CUI H Z, ZHENG W L, et al. Effects of SiCw on porous Al2TiO5-SiCw composites by reaction sintering[J]. Acta Materiae Compositae Sinica, 2014, 31(5):1270-1276(in Chinese).
[18]  XU G G, MA Y H, RUAN G Z, et al. Preparation of porous Al2TiO5 ceramics reinforced by in situ formation of mullite whiskers[J]. Materials and Design, 2013, 47:57-60.
[19]  NISHIJIMA H, MAKI R, SUZUKI Y. Microstructural control of porous Al2TiO5 by using potato starch as pore-forming agent[J]. Journal of Ceramic Society of Japan, 2013, 121(8):730-733.
[20]  ANANTHAKUMAR S, JAYASANKAR M, WARRIER K G K. Microstructure and high temperature deformation characteristics of sol-gel derived aluminium titanate-mullite composites[J]. Materials Chemistry and Physics, 2009, 117(2-3):359-364.
[21]  LI S, WANG C A, ZHOU J. Effect of starch addition on microstructure and properties of highly porous alumina ceramics[J]. Ceramics International, 2013, 39(8):8833-8839.
[22]  NAGHIZADEH R, REZAIE H R, GOLESTANIFARD F. The influence of composition, cooling rate and atmosphere on the synthesis and thermal stability of aluminum titanate[J]. Materials Science and Engineering:B, 2009, 157(1-3):20-25.
[23]  田贵山, 李双, 谢志鹏. 碳化硅晶须改性反应烧结碳化硅陶瓷的显微结构及性能[J]. 硅酸盐学报, 2014, 42(12):1520-1527. TIAN G S, LI S, XIE Z P. Microstructure and me chanical behavior of resction bonded silicon carbide ceramics modified with SiC whisker[J]. Journal of the Chinese Ceramic Society, 2014, 42(12):1520-1527(in Chinese).
[24]  崔洪芝, 李书海, 崔德运. SiC对反应烧结多孔Al2TiO5的物相及组织性能影响[J]. 无机材料学报, 2014, 29(5):509-514. CUI H Z, LI S H, CUI D Y. Effects of SiC on phases, microstructure and mechanical property of porous Al2TiO5 fabricated by reaction sintering[J]. Journal of Inorganic Materials, 2014, 29(5):509-514(in Chinese).
[25]  SHEN Y, RUAN Y Z, YU Y. Study on the in-situ synthesis of aluminum titanate sintered by waste aluminum slag[J]. Chinese Journal of Structure Chemistry, 2009, 28(1):61-66.
[26]  CUI H Z, XU G G, GE C L, et al. Synthesis of porous Al2TiO5 ceramic by reaction sintering method[J]. Journal of Ceramic Society of Japan, 2012, 120(10):413-416.
[27]  何平伟, 李晓云, 陆鑫翔, 等. 低温常压烧结制备碳化硅-莫来石复相材料[J]. 硅酸盐学报, 2013, 41(5):696-700. HE P W, LI X Y, LU X X, et al. Low temperature presureless sintering of SiC-mullite composites[J]. Journal of the Chinese Ceramic Society, 2013, 41(5):696-700(in Chinese).
[28]  SAMER N, ANDRIEUX J, GARDIOLA B, et al. Microstructure and mechanical properties of an Al-TiC metal matrix composite obtained by reactive synthesis[J]. Composites Part A:Applied Science and Manufacturing, 2015, 72:50-57.
[29]  SHINODA Y, SUZUKI Y, YOSHIDA K. TEM analysis of nanocrystalline SiC ceramics sintered by SPS using Al2O3-TiO2 additive[J]. Integrative Medicine Research, 2013, 1(3):267-273.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133