全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

考虑热效应复合材料典型壁板结构模态演变规律
Modal evolution of composite typical panel structure considering thermal effects

DOI: 10.13801/j.cnki.fhclxb.20170705.002

Keywords: 加筋板,连接板,热效应,热屈曲,热模态演变
stiffened plate
,connecting plate,thermal effect,thermal buckling,thermal modal evolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

以复合材料加筋板和连接板为研究对象,进行了考虑材料物性变化、热应力及热变形影响因素的跨越屈曲温度热模态分析,研究了壁板结构的模态演变规律。结果表明:热屈曲前,结构各阶频率因受材料物性变化和热应力的影响逐渐减小,而热屈曲后引起的大变形起到增加结构刚度的作用,频率转而增大。热效应会导致结构模态发生相互演变的现象,且高温阶段具有模态密集特征;加筋板的初始挠度、加筋尺寸和方式不仅改变结构热屈曲温度,也会使模态形式发生变化并呈现局部化特点;连接板结构均匀受热后产生的热变形,会"刚化"与其相似的模态,使该阶模态随着温升跃迁至高阶位置。 A thermal modal analysis method was established by considering the effects of material property's change, thermal stress and deformation to investigate thermal modal evolution of composite stiffened and connecting plates. The calculation results show that material property's change and thermal stress result in the increasing in modal frequencies under thermal buckling temperature. In post-buckling stage, the nonlinear deformation can increase the stiffness of panel structures, which makes the modal frequencies increase. Mode changes occur during the whole warming-up process and modals tend to be dense; Initial deflections, size of stiffeners and reinforcement patterns have great influence on the critical buckling temperature of stiffened plates. Mode shapes are also changed and appear characteristics of localized. For connecting plates, due to the similarity of thermal deformation and modal shape, the modal frequency will jump from the lower order to the higher. 国家自然科学基金(11772107)

References

[1]  GENG Q, LI Y M. Analysis of dynamic and acoustic radiation characters for a flat plate under thermal environments[J]. International Journal of Applied Mechanics, 2012, 4(3):150-152.
[2]  GENG Q, WANG D, LIU Y, et al. Experimental and numerical investigations on dynamic and acoustic responses of a thermal post-buckled plate[J]. Science China Technological Sciences, 2015, 58(8):1414-1424.
[3]  史晓鸣, 杨炳渊. 瞬态加热环境下变厚度板温度场及热模态分析[J]. 计算机辅助工程, 2006, 15(S1):15-18. SHI X M, YANG B Y. Temperature field and mode analysis of flat plate with thermal environment of transient heating[J]. Computer Aided Engineering, 2006, 15(S1):15-18(in Chinese).
[4]  耿谦, 李跃明, 杨雄伟. 热应力作用下结构声-振耦合响应数值分析[J]. 计算力学学报, 2012, 29(1):99-104. GENG Q, LI Y M, YANG X W. Vibro-acoustic numerical analysis of thermally stressed aircraft structure[J]. Chinese Journal of Computational Mechanics, 2012, 29(1):99-104(in Chinese).
[5]  洪善桃, 周正威, 杨建中. 正交各向异性连续板的强迫振动的稳态解[J]. 同济大学学报, 1984(1):101-114. HONG S T, ZHOU Z W, YANG J Z. The solution of steady forced vibration for continuous orthotropic plates[J]. Journal of Tongji University, 1984(1):101-114(in Chinese).
[6]  康桂东, 黄映云, 李鹏飞, 等. 基于有限元和实验模态的螺栓连接板分析[J]. 船海工程, 2010, 39(5):14-16. KANG G D, HUANG Y Y, LI P F, et al. Analysis of bolt connect board base on finite element and experiment mode[J]. Ship & Ocean Engineering, 2010, 39(5):14-16(in Chinese).
[7]  VOSTEEN L F, FULLER K E. Behavior of a cantilever plate under rapid heating conditions NACA RML55E20[R]. US:National Advisory Committee for Aeronautics, 1955.
[8]  VOSTEEN L F, MCWITHEY R R, THOMSON R G. Effect of transient heating on vibration frequencies of some simple wing structures[J]. Technical Report Archive & Image Library, 1957, 61(1260):i46-i48.
[9]  CHENG H, LI H B, ZHANG W, et al. Effects of radiation heating on modal characteristics of panel structures[J]. Journal of Spacecraft and Rockets, 2015, 52(4):1228-1235.
[10]  黄世勇, 王智勇. 热环境下的结构模态分析[J]. 导弹与航天运载技术, 2009(5):50-56. HUANG S Y, WANG Z Y. The structure modal analysis with thermal environment[J]. Missiles and Space Vehicle, 2009(5):50-56(in Chinese).
[11]  王永岗, 戴诗亮. 受热双层金属圆板的非线性振动[J]. 清华大学学报, 2003, 43(2):218-221. WANG Y G, DAI S L. Nonlinear vibration of heated bimetallic thin circular plates[J]. Journal of Tsinghua University, 2003, 43(2):218-221(in Chinese).
[12]  洪善桃, 周正威, 张我华, 等. 正交各向异性连续板的振动[J]. 振动与冲击, 1984(1):1-14. HONG S T, ZHOU Z W, ZHANG W H, et al. Vibration of continuous orthotropic plates[J]. Journal of Vibration and Shock, 1984(1):1-14(in Chinese).
[13]  THOMPSON R C, RICHARDS W L. Thermal-structural panel buckling tests:NASA TM-104243[R]. US:Structural Testing Technology at High Temperature; Conference, 1991.
[14]  HUDSON L D, STEPHENS C A. X-37 C/SiC ruddervator subcomponent test program[M]. USA:BiblioGov Books, 2013.
[15]  吴大方, 王岳武, 蒲颖, 等. 高超声速飞行器复合材料翼面结构1100℃高温环境下的热模态试验[J]. 复合材料学报, 2015, 32(2):323-331. WU D F, WANG Y W, PU Y, et al. Thermal modal test of composite wing structures in high-temperature environment up to 1000℃ for hypersonic vehicles[J]. Acta Materiae Compositae Sinica, 2015, 32(2):323-331(in Chinese).
[16]  吴大方, 王岳武, 商兰, 等. 1200℃高温环境下板结构热模态试验研究与数值模拟[J]. 航空学报, 2016, 37(6):1861-1875. WU D F, WANG Y W, SHANG L, et al. Test research and numerical simulation on thermal modal of plate structures in 1200℃ high-temperature environment[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1861-1875(in Chinese).
[17]  PRABHU M R, DHANARAJ R. Thermal buckling of laminated composite plates[J]. Computers & Structures, 1994, 53(5):1193-1204.
[18]  DU M, GENG Q, LI Y M. Vibrational and acoustic responses of a laminated plate with temperature gradient along the thickness[J]. Composite Structures, 2016, 157:483-493.
[19]  杨雄伟, 李跃明, 闫桂荣. 考虑材料物性热效应飞行器声振耦合动态特性分析[J]. 固体力学学报, 2010, 31(S1):134-142. YANG X W, LI Y M, YAN G R. Vibro-acoustic dynamic analysis of aircraft with temperature-dependent material property[J]. Acta Mechanica Solida Sinica, 2010, 31(S1):134-142(in Chinese).
[20]  陈塑寰. 结构振动分析的矩阵摄动理论[M]. 重庆:重庆出版社, 1991. CHEN S H. Matrix perturbation theory in structural vibration analysis[M]. Chongqing:Chongqing Publishing Group, 1991(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133