|
- 2018
纳米纤维素分散的高稳定性单片层黏土分散液的制备及其在透明柔性薄膜的应用
|
Abstract:
以天然的纳米纤维素(NFC)为分散剂,利用其亲水亲油的特性,将其用于剥离和分散片层黏土,成功攻克单片层黏土易发生絮聚的缺陷,高获得率制备出NFC分散的具有优异稳定性的单片层黏土分散液,并采用AFM和TEM对NFC和单片层黏土的形貌进行表征。最后,将单片层黏土分散体与NFC结合成功制备出一种高透明柔性薄膜。当单片层黏土含量为50wt%时,NFC/单片层黏土复合薄膜在600~800 nm波长下的透光率高达90%,且呈现较低的雾度。此外,该薄膜还具有优异的紫外阻隔能力,在紫外区能完全阻隔短波紫外线(UVC,波长为100~290 nm),阻隔大部分中波紫外线(UVB,波长为290~320 nm)。NFC分散的具有优异稳定性的单片层黏土分散液的成功制备,将有助于拓展纳米黏土的应用领域及提高单片层黏土基复合材料的性能。 Using amphiphilic nanofibrillated cellulose (NFC) as a green dispersing agent to exfoliate and disperse layered clay in water. The NFC-dispersed monolayer clay nanoplatelet dispersion with excellent stability and high yield was obtained, and the morphologies of NFC and NFC-dispersed monolayer nanoclay suspension were characterized with AFM and TEM. Herein, NFC and NFC-dispersed monolayer clay nanoplatelets were combined to prepare highly transparent flexible film. As the content of monolayer clay nanoplatelets is 50wt%, the resultant NFC/monolayer clay nanoplatelet compound film exhibits about 90% transparency at 600-800 nm and a low transmission haze. NFC/monolayer clay film presents excellent ultraviolet screening properties, which can completely blcoks ultraviolet C (UVC, 100-290 nm) and most of ultraviolet B (UVB, 290-320 nm). The successful preparation of NFC-dispersed stable monolayer clay nanoplatelet dispersion will not only expand their application fields but also improve the performance of monolayer nanoclay matrix composites. 国家自然科学青年科学基金(31700508);广东省自然科学基金-博士启动(2017A030310635);国家金属材料近净成形工程技术研究中心、金属材料高效近净成形技术与装备教育部重点实验室开放基金(2016006);广州市珠江科技新星专项资助(201806010141)
[1] | LIU A, WALTHER A, IKKALA O, et al. Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions[J]. Biomacromolecules, 2011, 12(3):633-641. |
[2] | WANG J, CHENG Q, LIN L, et al. Synergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre[J]. ACS Nano, 2014, 8(3):2739-2745. |
[3] | AULIN C, SALAZAR-ALVAREZ G, LINDSTROM T. High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability[J]. Nanoscale, 2012, 4(20):6622-6628. |
[4] | 张博明, 曹俊, 王洋. 有机黏土对碳纤维/聚醚砜-环氧复合材料层间断裂韧性的影响[J]. 复合材料学报. 2016, 33(10):2141-2150. ZHANG B M, CAO J, WANG Y. Effects of organoclay on interlaminar fracture toughness of carbon fiber/polyethersulfone-epoxy composites[J]. Acta Materiae Compositae Sinica, 2016, 33(10):2141-2150(in Chinese) |
[5] | 漆宗能, 尚文宇. 聚合物/层状硅酸盐纳米复合材料理论与实践[M]. 北京:材料科学与工程出版中心, 2002. QI Z N, SHANG W Y. The theory and practice of polymer/layered silicate composite materials[M]. Beijing:Polymer Materials and Engineering Publishing Center, 2002(in Chinese). |
[6] | MING S, CHEN G, WU Z, et al. Effective dispersion of aqueous clay suspension using carboxylated nanofibrillated cellulose as dispersant[J]. RSC Advances, 2016, 6(44):37330-37336. |
[7] | LI Y, ZHU H, SHEN F, et al. Nanocellulose as green dispersant for two-dimensional energy materials[J]. Nano Eenergy, 2015, 13:346-354. |
[8] | MING S, CHEN G, HE J, et al. Highly transparent and self-extinguishing nanofibrillated cellulose-monolayer clay nanoplatelet hybrid films[J]. Langmuir, 2017, 33(34):8455-8462. |
[9] | LIU A, BERGLUND L A. Fire-retardant and ductile clay nanopaper biocomposites based on montmorrilonite in matrix of cellulose nanofibers and carboxymethyl cellulose[J]. European Polymer Journal, 2013, 49(4):940-949. |
[10] | LIU A, BERGLUND L A. Clay nanopaper composites of nacre-like structure based on montmorrilonite and cellulose nanofibers-improvements due to chitosan addition[J]. Carbohydrate Polymers, 2012, 87(1):53-60. |
[11] | DONIUS A E, LIU A, BERGLUND L A, et al. Superior mechanical performance of highly porous, anisotropic nanocellulose-montmorillonite aerogels prepared by freeze casting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37:88-99. |
[12] | YAO K, HUANG S, TANG H, et al. Bioinspired interface engineering for moisture resistance in nacre-mimetic cellulose nanofibrils/clay nanocomposites[J]. ACS Applied Materials & Interfaces, 2017, 9(23):20169-20178. |
[13] | DING F, LIU J, ZENG S, et al. Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly[J]. Science Advances, 2017, 3(7):e1701212. |
[14] | MAZEAU K. On the external morphology of native cellulose microfibrils[J]. Carbohydrate Polymers, 2011, 84(1):524-532. |
[15] | 李春忠, 韩哓芳, 齐栋栋, 等. 一步法制备蒙脱土-石墨烯协同增强聚乙烯醇复合材料[J]. 高分子学报, 2014(2):218-225. LI C Z, HAN X F, QI D D, et al. Synergistic effect of hybrid montmorillonite-reduced graphene oxide as dual filler for improving the mechanical properties of PVA composites by a one-step procedure[J]. Acta Polymerica Sinica, 2014(2):218-225(in Chinese). |
[16] | SEHAQUI H, KOCHUMALAYIL J, LIU A, et al. Multifunctional nanoclay hybrids of high toughness, thermal, and barrier performances[J]. ACS Applied Materials & Interfaces, 2013, 5(15):7613-7620. |
[17] | 刘继纯, 陈权, 井蒙蒙, 等. 有机蒙脱土/聚苯乙烯复合材料的燃烧性能与阻燃机制[J]. 复合材料学报, 2011, 28(6):50-58. LIU J C, CHEN Q, JING M M, et al. Fire performance and flame-retardant mechanism of organic montmorillonite/polystyrene composites[J]. Acta Materiae Compositae Sinica, 2011, 28(6):50-58(in Chinese) |
[18] | SEHAQUI H, LIU A, ZHOU Q, et al. Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures[J]. Biomacromolecules, 2010, 11(9):2195-2198. |
[19] | SONG Y, HAGEN D A, QIN S, et al. Edge charge neutralization of clay for improved oxygen gas barrier in multilayer nanobrick wall thin films[J]. ACS Applied Materials & Interfaces. 2016, 8(50):34784-34790. |
[20] | 赖登旺, 陈静, 张起, 等. 剥离型纳米蒙脱土/聚酰亚胺复合材料的制备与表征[J]. 复合材料学报, 2014, 31(3):597-603. LAI D W, CHEN J, ZHANG Q, et al. Preparation and characterization of exfoliated nano-montmorillonite/polyimide composite[J]. Acta Materiae Compositae Sinica, 2014, 31(3):597-603(in Chinese). |
[21] | CAROSIO F, KOCHUMALAYIL J, CUTTICA F, et al. Oriented clay nanopaper from biobased components mechanisms for superior fire protection properties[J]. ACS Applied Materials & Interfaces, 2015, 7(10):5847-5856. |
[22] | WANG J, CHENG Q, LIN L, et al. Understanding the relationship of performance with nanofiller content in the biomimetic layered nanocomposites[J]. Nanoscale, 2013, 5(14):6356-6362. |
[23] | EICHORN S J, DUFRESNE A, ARANGUREN M, et al. Review:Current international research into cellulose nano-fibres and nanocomposites[J]. Journal of Materials Science, 2010, 45(1):1-33. |
[24] | YAMANE C, AOYAGI T, AGO M, et al. Two different surface properties of regenerated cellulose due to structural anisotropy[J]. Polymer Journal, 2006, 38(8):819-826. |
[25] | HAMEDI M M, HAJIAN A, FALL A B, et al. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes[J]. ACS Nano, 2014, 8(3):2467-2476. |