全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Ti-C含量对多孔TiC/FeAl复合材料孔型结构和力学性能的影响
Effects of Ti-C contents on the pore structures and mechanical properties of porous TiC/FeAl composites

DOI: 10.13801/j.cnki.fhclxb.20171115.008

Keywords: Ti-C,多孔TiC/FeAl,自蔓延高温合成,孔型结构,压缩性能
Ti-C
,porous TiC/FeAl,self-propagating high-temperature synthesis,pore structures,compressive properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

以尿素为造孔剂,利用自蔓延高温合成技术制备了多孔TiC/FeAl复合材料,主要考察了Ti-C含量(质量分数为15wt%~35wt%)对多孔TiC/FeAl复合材料孔型结构和压缩性能的影响。当Ti-C含量不高于25wt%时,多孔TiC/FeAl复合材料由毫米孔和孔壁微孔组成规则的复合孔型结构。相互连通的毫米孔产生于尿素颗粒的挥发和液相迁移;微孔尺寸为10~50 μm,产生于Fe-Al-Ti-C粉末的自蔓延过程,孔径随Ti-C含量的增加而增大。通过调整尿素的体积分数,多孔TiC/FeAl复合材料的孔隙率可控制在56.64%~85.35%。当Ti-C含量不高于25wt%时,多孔TiC/FeAl复合材料的抗压强度随Ti-C含量的增加而增大。当Ti-C含量高于25wt%时,多孔TiC/FeAl复合材料壁面微孔形状很不规则,且抗压强度下降。孔隙率约为64.3%时,多孔Fe-Al金属间化合物和TiC/FeAl复合材料(Ti-C含量为25wt%)的抗压强度分别为20.03 MPa和66.68 MPa,对应的应变值分别为4.77%和8.21%。另外,多孔TiC/FeAl复合材料的压缩性能可用Gibson-Ashby模型来解释。 The porous TiC/FeAl composites were fabricated by using carbamide as apace-holders via self-propagating high-temperature synthesis (SHS). The effects of Ti-C contents (mass fraction:15wt%-35wt%) on the pore structures and compressive behaviors of the porous TiC/FeAl composites were investigated. When Ti-C content is not more than 25wt%, the porous TiC/FeAl composites exhibit composite pore structures composed of millimeter pores and micro pores dispersed in pore walls. The interconnected millimeter pores originate from the volatilization of carbamide particles and the migration of liquid phases, while the micro pores are formed during the SHS process of the Fe-Al-Ti-C powders, the pore size (10-50 μm) of micro pores increases with increasing Ti-C content. Depending on the volume fraction of the carbamide, the porosity of the porous TiC/FeAl composites can be controlled in a range of 56.64%-85.35%. When Ti-C mass fraction is not more than 25wt%, the compressive strength of porous TiC/FeAl composites increases with increasing Ti-C content. When Ti-C mass fraction is higher than 25wt%, the morphology of micro pores becomes very irregular, and the compressive strength decreases. As the porosity is about 64.3%, the compressive strengths of porous Fe-Al and porous TiC/FeAl composite with 25wt% Ti-C are 20.03 MPa and 66.68 MPa, corresponding strains are 4.77% and 8.21%, respectively. Furthermore, the compressive behavior of porous TiC/FeAl composites can be understood by the Gibson-Ashby model. 山东省自然科学基金(ZR2014EMM009)

References

[1]  高海燕. Fe-Al金属间化合物多孔材料的研究[D]. 长沙:中南大学, 2009. GAO H Y. Study on porous Fe-Al intermetallics[D]. Changsha:Central South University, 2009(in Chinese).
[2]  崔洪芝. 多孔金属间化合物/陶瓷载体材料研究[D]. 青岛:中国石油大学, 2009. CUI H Z. Study on porous intermetallics/ceramics carrier materials[D]. Qingdao:China University of Petroleum, 2009(in Chinese).
[3]  MEHRIZI M Z, SAIDI A, SHAMANIAN M, et al. Combustion synthesis of Fe-Al/TiC composite powders and effect of Al content on its characteristics[J]. Powder Metallurgy, 2011, 54(3):400-403.
[4]  YEH C L, WANG P W, CHEN W K, et al. Modeling evaluation of Arrhenius factor and thermal conductivity for combustion synthesis of transition metal aluminides[J]. Intermetallics, 2013, 39:20-24.
[5]  张珊珊, 崔洪芝, 赫庆坤, 等. 等离子加热反应合成TiB2-TiC-Fe2Ti复合材料[J]. 复合材料学报, 2014, 31(3):556-562. ZHANG S S, CUI H Z, HE Q K, et al. TiB2-TiC-Fe2Ti composite synthesized by plasma heating reactin[J]. Acta Materiae Compositae Sinica, 2014, 31(3):556-562(in Chinese).
[6]  ?AZI AN'G SKA M, DUREJKO T, LIPI AN'G SKI S, et al. Porous graded FeAl intermetallic foams fabricated by sintering process using NaCl space holders[J]. Materials Science & Engineering A, 2015, 636:407-414.
[7]  WU J, CUI H Z, CAO L L, et al. Open-celled porous NiAl intermetallics prepared by replication of carbamide space-holders[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(8):1750-1754.
[8]  HAO G L, HAN F S, LI W D. Processing and mechanical properties of magnesium foams[J]. Journal of Porous Materials, 2009, 16(2):251-256.
[9]  KANETAKE N, KOBASHI M. Innovative processing of porous and cellular materials by chemical reaction[J]. Scripta Materialia, 2006, 54(4):521-525.
[10]  KOBASHI M, KANETAKE N. Processing of intermetallic foam by combustion reaction[J]. Advanced Engineering Materials, 2002, 4(10):745-747.
[11]  HAO G L, WANG H, LI X Y. Novel double pore structures of TiAl produced by powder metallurgy processing[J]. Material Letters, 2015, 142:11-14.
[12]  殷声. 燃烧合成[M]. 北京:冶金工业出版社, 2004. YIN S. Combustion synthesis[M]. Beijing:Metallurgical Industry Press, 2004(in Chinese).
[13]  WEI N, CUI H Z, WU J, et al. The effects of forming conditions and TiC-TiB2 contents on the microstructures of self-propagating high-temperature synthesized NiAl-TiC-TiB2 composites[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(1):39-47.
[14]  YAMADA Y, BANNO T, XIE Z K, et al. Preparation and characterisation of open-cell microporous nickel[J]. Materials Science Forum, 2007, 539(543):1833-1838.
[15]  SHARIFITABAR M, KHAKI J V, SABZEVAR M H. Formation mechanism of TiC-Al2O3-Fe3Al composites during self-propagating high-temperature synthesis of TiO2-Al-C-Fe system[J]. Ceramics International, 2016, 42(10):12361-12370.
[16]  SONG B, DONG S J, LIAO H L, et al. Microstructure and wear resistance of FeAl/Al2O3 intermetallic composite coating prepared by atmospheric plasma spraying[J]. Surface & Coatings Technology, 2015, 268:24-29.
[17]  KRATOCHVíL P, VODI A? KOVá V, HAKL J, et al. High temperature mechanical properties of Fe28Al4Cr alloy with additives TiB2 and Zr[J]. Intermetallics, 2010, 18(7):1365-1368.
[18]  吴瑞瑞, 李秋书, 郭璐, 等. 原位合成TiC/Al(7075)复合材料的组织及力学性能[J]. 复合材料学报, 2017, 34(6):1334-1339. WU R R, LI Q S, GUO L, et al. Microstructure and mechanical properties of TiC/Al(7075) composites fabricated by in situ reaction[J]. Acta Materiae Compositae Sinica, 2017, 34(6):1334-1339(in Chinese).
[19]  吴小红, 罗军明, 黄俊, 等. 微波烧结TiC/Ti6Al4V复合材料的高温氧化行为[J]. 复合材料学报, 2017, 34(1):135-141. WU X H, LUO J M, HUANG J, et al. High temperature oxidation behavior of microwave sintering TiC/Ti6Al4V composites[J]. Acta Materiae Compositae Sinica, 2017, 34(1):135-141(in Chinese).
[20]  GAO H Y, HE Y H, ZOU J, et al. Pore structure control for porous FeAl intermetallics[J]. Intermetallics, 2013, 32:423-428.
[21]  GAO H Y, HE Y H, SHEN P Z, et al. Effect of pressure on pore structure of porous FeAl intermetallics[J]. Advanced Powder Technology, 2015, 26(3):882-886.
[22]  GAO H Y, HE Y H, ZOU J, et al. Mechanical properties of porous Fe-Al intermetallics[J]. Powder Metallurgy, 2015, 58(3):197-201.
[23]  GODLEWSKA E, SZCZEPANIK S, MANIA R, et al. FeAl materials from intermetallic powders[J]. Intermetallics, 2003, 11(4):307-312.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133