|
- 2016
微结构对泡沫材料蠕变性能的影响
|
Abstract:
针对较低密度开孔泡沫的正四面体模型,通过引入支柱结点处的体积修正使新模型能够用于预测较大密度范围内的泡沫材料的蠕变性能,并且基于该修正模型,分析了斜支柱的弯曲变形机制以及剪切变形机制对蠕变应变率的影响。结果表明:当泡沫材料的相对密度较低时,支柱的弯曲变形机制决定了其蠕变速率;而当相对密度较高时,支柱的剪切变形作用机制开始主导其蠕变速率。通过与实验结果的比较验证了本文预测的有效性。 In this work, the tetrahedral unit cell model, which was suitable for low-density foam, was modified to predict the creep properties of foam materials in a broader range of density varieties, by considering the volume correction at the intersection point of struts. The influences of the bending and shearing deformation mechanisms of the inclined struts on the creep strain rate were investigated based on the modified model. The results indicate that the bending deformation mechanism of struts dominates the creep rate of the foam with a relative low density, and the shearing deformation mechanism dominates the creep rate of the foam with a relative high density. A comparison with the experiment results verified the predictions of the present work. 国家自然科学基金(11472025,11272030)
[1] | CHEN T J, HUANG J S. Creep-rupturing of open-cell foams[J]. Acta Materialia, 2008, 56(10):2283-2289. |
[2] | CHEN T J, HUANG J S. Creep-buckling of open-cell foams[J]. Acta Materialia, 2009, 57(5):1497-1503. |
[3] | ANDREWS E W, GIBSON L J. The influence of cracks, notches and holes on the tensile strength of cellular solids[J]. Acta Materialia, 2001, 49(15):2975-2979. |
[4] | ANDREWS E W, GIBSON L J. The role of cellular structure in creep of two-dimensional cellular solids[J]. Materials Science and Engineering:A, 2001, 303(1):120-126. |
[5] | FROST H J, ASHBY M F. Deformation-mechanism maps:the plasticity and creep of metals and ceramics[M]. Oxford:Pergamon Press, 1982. |
[6] | HUANG J S, GIBSON L J. Creep of polymer foams[J]. Journal of Material Science, 1991, 26(3):637-647. |
[7] | ANDREWS E W, GIBSON L J, ASHBY M F. The creep of cellular solids[J]. Acta Materialia, 1999, 47(10):2853-2863. |
[8] | ANDREWS E W, HUANG J S, GIBSON L J. Creep behavior of a closed-cell aluminum foam[J]. Acta Materialia, 1999, 47(10):2927-2935. |
[9] | ZHU H X, MILLS N J. Modelling the creep of open-cell polymer foams[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(7):1437-1457. |
[10] | ZUROB H S, BRECHET Y. Effect of structure on the creep of open-cell nickel foams[J]. Journal of Materials Science, 2005, 40(22):5893-5901. |
[11] | MUELLER R, SOUBIELLE S, GOODALL R, et al. On the steady-state creep of microcellular metals[J]. Scripta Materialia, 2007, 57(1):33-36. |
[12] | HUANG J S, GIBSON L J. Creep of open-cell Voronoi foams[J]. Materials Science and Engineering:A, 2003, 339(1):220-226. |
[13] | FAN Z G, CHEN C Q, LU T J. Multiaxial creep of low density open-cell foams[J]. Materials Science and Engineering:A, 2012, 540:83-88. |
[14] | SU B Y, ZHOU Z W, WANG Z H, et al. Effect of defects on creep behavior of cellular materials[J]. Materials Letters, 2014, 136:37-40. |
[15] | HODGE A M, DUNAND D C. Measurement and modeling of creep in open-cell nickel foams[J]. Metallurgical and Materials Transactions A, 2003, 34(10):2353-2363. |
[16] | BOONYONGMANEERAT Y, DUNAND D C. Effects of strut geometry and pore fraction on creep properties of cellular materials[J]. Acta Materialia, 2009, 57(5):1373-1384. |
[17] | WARREN W E, KRAYNIK A M. The nonlinear elastic behavior of open-cell foams[J]. Journal of Applied Mechanics, 1991, 58(2):376-381. |
[18] | JANG W Y, KRAYNIK A M, KYRIAKIDES S. On the microstructure of open-cell foams and its effect on elastic properties[J]. International Journal of Solids and Structures, 2008, 45(7):1845-1875. |
[19] | GIBSON L J, ASHBY M F. Cellular solids:structure and properties[M]. 2nd ed. Cambridge:Cambridge University Press, 1997. |
[20] | JANG W Y, KYRIAKIDES S. On the crushing of aluminum open-cell foams:Part I Experiments[J]. International Journal of Solids and Structures, 2009, 46(3):617-634. |