全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

环氧化功能碳纳米管改性氨基PPS
Epoxy functionalized carbon nanotubes modified amino substituted PPS

DOI: 10.13801/j.cnki.fhclxb.20160307.003

Keywords: 氨基改性聚苯硫醚,电导率,热性能,功能化,共价作用
amino substituted poly(phenylene sulfide)
,electrical conductivity,thermal properties,functional,covalent interaction

Full-Text   Cite this paper   Add to My Lib

Abstract:

聚苯硫醚(PPS)是绝缘和疏水性材料,一定程度上限制了其在某些特定领域的应用。利用氨基改性PPS(NPPS),并利用环氧功能化多壁碳纳米管(EFMWCNTs)与NPPS共价作用形式,采用溶液共混制备了EFMWCNTs/NPPS导电复合材料。利用FTIR、XPS、XRD、FESEM、TEM、DSC、TGA和半导体粉末电导率测试仪系统表征了复合材料的结构与性能。表征结果显示:PPS的链段上引入氨基后,PPS的熔融峰和结晶峰消失。NPPS利用EFMWCNTs进一步改性后,EFMWCNTs/NPPS导电复合材料的热稳定性相比NPPS增加,原因是EFMWCNTs与NPPS之间的共价作用有效提高了EFMWCNTs在NPPS中的分散性。EFMWCNTs/NPPS复合材料的电导率随EFMWCNTs添加量增加而增加,添加10wt%的EFMWCNTs时,复合材料的电导率为6.1×10-2 S/cm。 Poly(phenylene sulfide) (PPS) is an insulating and hydrophobic material, which somewhat limits its certain applications in some specific fields. The amino-group modified PPS (NPPS) was prepared, and NPPS was further modified with epoxy-functionalized muti-walled carbon nanotubes (EFMWCNTs) by solution blending method via covalent interaction, and EFMWCNTs/NPPS conductive composites were prepared. The structure and properties of composites were characterized by various techniques including FTIR, XPS, XRD, FESEM, TEM, DSC, TGA and semiconductor powder resistivity tester. Characterization results show that when amino-group was introduced into the chain segment of PPS, the melting peak and crystalline peak of PPS disappear. After NPPS is further modified with EFMWCNTs, compared with NPPS, the thermal stability of EFMWCNTs/NPPS conductive composites increases because EFMWCNTs were attached onto NPPS by covalent bond which is effective to disperse EFMWCNTs into NPPS matrix. Electrical conductivity of EFMWCNTs/NPPS composites increases with the increase of EFMWCNTs content. The electrical conductivity of composite is 6.1×10-2 S/cm with loading 10wt% EFMWCNTs. 国家自然科学基金(51173131,21376177);天津市自然基金重点项目(15JCZDJC37000);中国纺织工业联合会应用基础研究(J201406);山西省科技创新项目(201401002);中国石油化工股份有限公司项目(208068,211100,215038)

References

[1]  HILL H W, BRADY D G. Properties, environmental stability, and molding characteristics of polyphenylene sulfide[J]. Polymer Engineering & Science, 1976, 16(12):831-835.
[2]  姜正飞, 朱姝, 孙泽玉, 等. 纺织结构碳纤维增强聚苯硫醚基复合材料的制备与力学性能[J]. 复合材料学报, 2013, 30(增刊1):112-117. JIANG Z F, ZHU S, SUN Z Y, et al. Preparation and mechanical properties of carbon fiber fabric reinforced polyphenylene sulfide composite[J]. Acta Materiae Compositae Sinica, 2013, 30(Suppl.1):112-117(in Chinese).
[3]  LU D, MAI Y W, LI R K Y, et al. Impact strength and crystallization behavior of nano-SiOx/poly (phenylene sulfide)(PPS) composites with heat-treated PPS[J]. Macromolecular Materials and Engineering, 2003, 288(9):693-698.
[4]  BECK H N. Solubility characteristics of poly (etheretherketone) and poly (phenylene sulfide)[J]. Journal of Applied Polymer Science, 1992, 45(8):1361-1366.
[5]  DíEZ-PASCUAL A M, DíEZ-VICENTE A L. High-performance aminated poly (phenylene sulfide)/ZnO nanocomposites for medical applications[J]. ACS Applied Materials & Interfaces, 2014, 6(13):10132-10145.
[6]  YU S, WONG W M, HU X, et al. The characteristics of carbon nanotube-reinforced poly (phenylene sulfide) nanocomposites[J]. Journal of Applied Polymer Science, 2009, 113(6):3477-3483.
[7]  卫保娟, 肖潭, 李雄俊, 等. 石墨烯与多壁碳纳米管增强环氧树脂复合材料的制备及性能[J]. 复合材料学报, 2012, 29(5):53-60. WEI B J, XIAO T, LI X J, et al. Graphene sheet multi-walled carbon nanotube functionalization composites mechanical properties[J]. Acta Materiae Compositae Sinica, 2012, 29(5):53-60(in Chinese).
[8]  DíEZ-PASCUAL A M, NAFFAKH M. Towards the development of poly (phenylene sulphide) based nanocomposites with enhanced mechanical, electrical and tribological properties[J]. Materials Chemistry and Physics, 2012, 135(2):348-357.
[9]  LIU Y L, CHEN W H. Modification of multiwall carbon nanotubes with initiators and macroinitiators of atom transfer radical polymerization[J]. Macromolecules, 2007, 40(25):8881-8886.
[10]  JEON I Y, LEE H J, CHOI Y S, et al. Semimetallic transport in nanocomposites derived from grafting of linear and hyperbranched poly (phenylene sulfide)s onto the surface of functionalized multi-walled carbon nanotubes[J]. Macromolecules, 2008, 41(20):7423-7432.
[11]  SYDLIK S A, LEE J H, WALISH J J, et al. Epoxy functionalized multi-walled carbon nanotubes for improved adhesives[J]. Carbon, 2013, 59(4):109-120.
[12]  JIN F L, PARK S J. Recent advances in carbon-nanotube-based epoxy composites[J]. Carbon Letters, 2013, 14(1):1-13.
[13]  DíEZ-PASCUAL A M, NAFFAKH M. Inorganic nanoparticle-modified poly (phenylene sulphide)/carbon fiber laminates:Thermomechanical behaviour[J]. Materials, 2013, 6(8):3171-3193.
[14]  NOLL A, FRIEDRICH K, BURKHARTT, et al. Effective multifunctionality of poly (p-phenylene sulfide) nanocomposites filled with different amounts of carbon nanotubes, graphite, and short carbon fibers[J]. Polymer Composites, 2013, 34(9):1405-1412.
[15]  THIELE D, COLMENAREJO E, GROBETY B, et al. Synthesis of carbon nanotubes on La 0.6 Sr 0.4 CoO3 as substrate[J]. Diamond and Related Materials, 2008, 18(1):34-38.
[16]  TABOR B J, MAGRE E P, BOON J. The crystal structure of poly-p-phenylene sulphide[J]. European Polymer Journal, 1971, 7(8):1127-1133.
[17]  CHUNG J S, BODZIUCH J, CEBE P. Effects of thermal history on crystal structure of poly (phenylene sulphide)[J]. Journal of Materials Science, 1992, 27(20):5609-5619.
[18]  DíEZ-PASCUAL A M, NAFFAKH M, MARCO C, et al. Mechanical and electrical properties of carbon nanotube/poly (phenylene sulphide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles[J]. Composites Part A:Applied Science and Manufacturing, 2012, 43(4):603-612.
[19]  JUNG R, PARK W I, KWON S M, et al. Location-selective incorporation of multiwalled carbon nanotubes in polycarbonate microspheres[J]. Polymer, 2008, 49(8):2071-2076.
[20]  SHENOGIN S, BODAPATI A, XUE L, et al. Effect of chemical functionalization on thermal transport of carbon nanotube composites[J]. Applied Physics Letters, 2004, 85(12):2229-2231.
[21]  DíEZ-PASCUAL A M, MARTíNEZ G, GONZáLEZ-DOMíNGUEZ J M, et al. Grafting of a hydroxylated poly (ether ether ketone) to the surface of single-walled carbon nanotubes[J]. Journal of Materials Chemistry, 2010, 20(38):8285-8296.
[22]  JIANG S L, GU X Y, ZHANG Z Y. Nucleation effect of hydroxyl-purified multiwalled carbon nanotubes in poly(p-phenylene sulfide) composites[J]. Journal of Applied Polymer Science, 2013, 127(1):224-229.
[23]  ABUILAIWI F A, LAOUI T, AL-HARTHI M, et al. Modification and functionalization of multiwalled carbon nanotube (MWCNT) via fischer esterification[J]. The Arabian Journal for Science and Engineering, 2010, 35(1C):37-48.
[24]  DíEZ-PASCUAL A M, NAFFAKH M, MARCO C, et al. Rheological and tribological properties of carbon nanotube/thermoplastic nanocomposites incorporating inorganic fullerene-like WS2 nanoparticles[J]. The Journal of Physical Chemistry B, 2012, 116(27):7959-7969.
[25]  DíEZ-PASCUAL A M, NAFFAKH M. Grafting of an aminated poly (phenylene sulphide) derivative to functionalized single-walled carbon nanotubes[J]. Carbon, 2012, 50(3):857-868.
[26]  BAUDOT C, VOLPE M V, KONG J C, et al. Epoxy functionalized carbon nanotubes and methods of forming the same:12/410, 630[P]. 2009-03-25.
[27]  RATHMAN T L, BAILEY W F. Optimization of organolithium reactions[J]. Organic Process Research & Development, 2008, 13(2):144-151.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133