|
- 2017
烧结温度对焦磷酸钙/Ti-35Nb-7Zr复合材料微观组织及力学性能的影响
|
Abstract:
为改善β型Ti-Nb-Zr合金的生物活性,添加20 wt%的焦磷酸钙(CPP)生物陶瓷,利用放电等离子烧结技术制备20CPP/Ti-35Nb-7Zr生物复合材料。借助XRD、SEM及力学测试方法等研究不同烧结温度(1 000~1 200℃)下复合材料的微观组织及力学性能,揭示其组织演变对力学性能的影响机制。结果表明:20CPP/Ti-35Nb-7Zr复合材料主要由β-Ti相基体、少量残留α-Ti相及金属-陶瓷相(CaTiO3、Ti2O、CaO、CaZrO3和TixPy)组成;随着烧结温度升高,复合材料中β-Ti相和金属-陶瓷相逐渐增多;金属与陶瓷之间的剧烈反应导致金属-陶瓷相的形态结构发生变化,复合材料中金属-陶瓷相从颗粒状析出物演变成连续网状组织,起到割裂基体的作用。20CPP/Ti-35Nb-7Zr复合材料的压缩弹性模量和抗压强度随着烧结温度的升高而增大,其中压缩弹性模量从64.0 GPa增加至71.4 GPa,金属-陶瓷相形态结构变化起主导作用。因此,控制20CPP/Ti-Nb-Zr复合材料中金属-陶瓷相的形态结构将有利于改善其力学性能。 To improve the bioactivity of β -type Ti-Nb-Zr alloy, 20 wt% CPP (calcium pyrophosphate) was added as bio-ceramic, and then the 20CPP/Ti-35Nb-7Zr composites were fabricated by spark plasma sintering (SPS) technology. The study was focus on microstructure and mechanical properties of the composites sintered at different temperatures (1 000-1 200℃). The influence mechanism of microstructure evolution on the mechanical properties was revealed. Results show that the composites are consisted of β -Ti phase matrix, a little residual α -Ti phase and metal-ceramic phases (CaO, Ti2O, CaTiO3, CaZrO3 and TixPy). With increasing sintering temperature, the β -Ti phase and metal-ceramic phase increase gradually. The changes of metal-ceramic phases from particle-like precipitate to a continuous network structure are caused by the fierce reaction between metal and ceramic, which separates the matrix. Compressive elastic moduli and compressive strength of 20CPP/Ti-35Nb-7Zr composites present substantial increases (64.0 to 71.4 GPa) with increase of sintering temperature due to the morphological changes of metal-ceramic phases. Therefore, it will be beneficial to improving mechanical properties by controlling the morphological structure of metal-ceramic phases in 20CPP/Ti-Nb-Zr composite. 国家自然科学基金(31660262);云南省教育厅科学研究基金(2016ZZX049);云南省中青年学术和技术带头人后备人才培养资助项目(2010CI011)
[1] | LONG M, RACK H J. Titanium alloys in total joint replacement-a materials science perspective[J]. Biomaterials, 1998, 19(18):1621-1639. |
[2] | CHEN Q Z, THOUAS G A. Metallic implant biomaterials[J]. Materials Science and Engineering Reports, 2015, 87:1-57. |
[3] | TADDEI E B, HENRIQUES V A R, SILVA C R M, et al. Production of new titanium alloy for orthopedic implants[J]. Materials Science and Engineering C, 2004, 24(5):683-687. |
[4] | BALBINOTTI P, GEMELLI E, BUERGER G, et al. Micro-structure development on sintered Ti/HA biocomposites produced by powder metallurgy[J]. Materials Research, 2011, 14(3):384-393. |
[5] | WANG X P, CHEN Y Y, XU L J, et al. Effects of Sn content on the microstructure, mechanical properties and biocompatibility of Ti-Nb-Sn/hydroxyapatite biocomposites synthesized by powder metallurgy[J]. Materials and Design, 2013, 49:511-519. |
[6] | ZHANG L, ZHANG Y Q, JIANG Y H, et al. Mechanical behaviors of porous Ti with high porosity and large pore size prepared by one-step spark plasma sintering technique[J]. Vacuum, 2015, 122:187-194. |
[7] | LIU Y, LIU F, ZHOU K C, et al. HA/Ti composite for biomedical application by mechanical milling[J]. Transactions of Nonferrous Metals Society of China, 2003, 13(1):60-64. |
[8] | FUKUDA A, TAKEMOTO M, SAITO T, et al. Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments[J]. Acta Biomaterialia, 2011, 7(3):1379-1386. |
[9] | 鲍雨梅, 许景顺, 高海明, 等. 牛血清环境下等离子喷涂ZrO2增强羟基磷灰石涂层的摩擦磨损性[J]. 复合材料学报, 2015, 32(6):1777-1783. BAO Y M, XU J S, GAO H M, et al. Friction and wear properties of plasma sprayed ZrO2 reinforced hydroxyapatite coatings in bovine serum environment[J]. Acta Materiae Compositae Sinica, 2015, 32(6):1777-1783 (in Chinese). |
[10] | 陈民芳, 刘技文, 王玉红, 等. 射频磁控溅射TiO2/HA复合生物膜的制备与表征[J]. 复合材料学报, 2003, 20(6):52-56. CHEN M F, LIU J W, WANG Y H, et al. Preparation and characterization of TiO2/HA biocomposite film by RF magnetron sputtering[J]. Acta Materiae Compositae Sinica, 2003, 20(6):52-56 (in Chinese). |
[11] | WOO K D, PARK S H, KIM J Y, et al. Microstructure and mechanical properties of Ti-35Nb-7Zr-XCPP biomaterials fabricated by rapid sintering[J]. Korean Journal of Materials Research, 2012, 22(3):150-154. |
[12] | 王涛, 张玉勤, 蒋业华, 等. Ti-35Nb-7Zr-XCPP生物复合材料的放电等离子烧结制备及其力学性能研究[J]. 稀有金属材料与工程, 2015, 44(4):1030-1034. WANG T, ZHANG Y Q, JIANG Y H, et al. Mechanical properties of Ti-35Nb-7Zr-XCPP biomedical composites prepared by spark plasma sintering[J]. Rare Metal Materials and Engineering, 2015, 44(4):1030-1034 (in Chinese). |
[13] | EVIS Z, USTA M, KUTBAY I. Hydroxyapatite and zirconia composites:Effect of MgO and MgF2 on the stability of phases and sinterability[J]. Materials Chemistry and Phy-sics, 2008, 110(1):68-75. |
[14] | LI Y H, YANG C, ZHAO H D, et al. New developments of Ti-based alloys for biomedical applications[J]. Materials, 2014, 7(3):1709-1800. |
[15] | MONDAL D, NGUYEN L, OH I H, et al. Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering[J]. Journal of Biomedical Materials Research Part A, 2013, 101A(5):1489-1501. |
[16] | LONG Y, ZHANG H Y, WANG T, et al. High-strength Ti-6Al-4V with ultrafine-grained structure fabricated by high energy ball milling and spark plasma sintering[J]. Materials Science and Engineering A, 2013, 585:408-414. |
[17] | 何正员, 张玉勤, 周荣, 等. Ti-35Nb-7Zr/10CPP生物复合材料微观组织与性能研究[J]. 功能材料, 2016, 47(3):3175-3180. HE Z Y, ZHANG Y Q, ZHOU R, et al. Study on microstructure and properties of Ti-35Nb-7Zr/10CPP biocomposite[J]. Journal of Functional Materials, 2016, 47(3):3175-3180 (in Chinese). |
[18] | CHEN Y Y, WANG X P, XU L J, et al. Tribological beha-vior study on Ti-Nb-Sn/hydroxyapatite composites in simulated body fluid solution[J]. Journal of the Mechanical Beha-vior of Biomedical Materials, 2012, 10:97-107. |
[19] | NING C Q, ZHOU Y. On the microstructure of biocomposites sintered from Ti, HA and bioactive glass[J]. Biomaterials, 2004, 25(17):3379-3387. |
[20] | NING C Q, ZHOU Y. Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method[J]. Acta Biomaterialia, 2008, 4(6):1944-1952. |
[21] | BOVAND D, YOUSEFPOUR M, RASOULI S, et al. Characterization of Ti-HA composite fabricated by mechanical alloying[J]. Materials and Design, 2015, 65:447-453. |
[22] | 宋子豪, 孙耀宁, 徐国强. Ti-HA-BaTiO3生物复合材料的制备与性能[J]. 复合材料学报, 2015, 32(6):1800-1806. SONG Z H, SUN Y N, XU G Q. Preparation and properties of Ti-HA-BaTiO3 bio-composites[J]. Acta Materiae Compo-sitae Sinica, 2015, 32(6):1800-1806 (in Chinese). |
[23] | KUMAR A, BISWAS K, BASU B. Hydroxyapatite-titanium bulk composites for bone tissue engineering applications[J]. Journal of Biomedical Materials Research Part A, 2015, 103(2):791-806. |
[24] | 中国国家标准化管理委员会. 金属材料室温压缩试验方法:GB/T 7314-1987[S]. 北京:中国标准出版社, 2005. Standardization Administration of the People's Republic of China. Metallic materials-compression testing at ambient temperature:GB/T 7314-1987[S]. Beijing:China Standards Press, 2005 (in Chinese). |
[25] | 南京化工学院, 清华大学, 华南工学院. 陶瓷材料研究方法[M]. 北京:中国建筑工业出版社, 1980:289-290. Nanjing University of Technology, Tsinghua University, South China University of Technology. Research methods of ceramic materials[M]. Beijing:China Architecture & Building Press, 1980:289-290 (in Chinese). |