|
- 2017
碳纳米管/聚合物复合材料界面结合性能的研究进展
|
Abstract:
碳纳米管(CNT)优异的力学性能使其成为复合材料优选的增强体。CNT/聚合物复合材料的力学性能主要受其界面结合性能的影响。综述了CNT/聚合物复合材料界面结合性能的研究方法和研究现状。对CNT/聚合物复合材料界面结合性能的研究,实验上采用微观表征技术、拉曼光谱分析技术和纳米力学拔出法,分子模拟方法则是通过对CNT施加位移或外力模拟CNT从聚合物基体中的抽拔过程。概述了聚合物的类型、晶态结构以及CNT的手性、功能化处理等因素对CNT/聚合物复合材料界面结合性能的影响,并展望了CNT/聚合物复合材料界面结合性能未来研究的重点方向。 The excellent mechanical properties of carbon nanotube (CNT) make it a preferred reinforcement for composites. The mechanical properties of CNT/polymer composites are greatly determined by the interfacial bonding characteristics. Both research methods and research progresses of the interfacial bonding characteristics of CNT/polymer composites were reviewed in this paper. Microscopic characterization techniques, raman spectroscopy analysis technology and nano-mechanical pull-out method were used in the experiment. Molecular simulation method simulated the pull-out process of CNT from the polymer matrix by applying displacement and force to CNT. The effects of polymer matrix (including type, crystal structure and density) and CNT (including chirality, diameter and functional processing) on the interfacial bonding characteristics of CNT/polymer composites were summarized and the signi-ficant future research directions of this field were prospected. 山东省自然科学基金(ZR2014EL003);中央高校基本科研业务费专项资金(14CX02221A,15CX02066A)
[1] | MONTAZERI A, MONTAZERI N. Viscoelastic and mechanical properties of multi walled carbon nanotube/epoxy composites with different nanotube content[J]. Materials & Design, 2011, 32(4):2301-2307. |
[2] | CHEN X, ZHENG M, PARK C, et al. Direct measurements of the mechanical strength of carbon nanotube-poly (methyl methacrylate) interfaces[J]. Small, 2013, 9(19):3345-3351. |
[3] | CADEK M, COLEMAN J, BARRON V, et al. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites[J]. Applied Physics Letters, 2002, 81(27):5123-5125. |
[4] | COLEMAN J N, CADEK M, BLAKE R, et al. High performance nanotube-reinforced plastics:understanding the mechanism of strength increase[J]. Advanced Functional Materials, 2004, 14(8):791-798. |
[5] | BARBER A H, COHEN S R, WAGNER H D. Measurement of carbon nanotube-polymer interfacial strength[J]. Applied Physics Letters, 2003, 82(23):4140-4142. |
[6] | COOPER C A, COHEN S R, BARBER A H, et al. Detachment of nanotubes from a polymer matrix[J]. Applied Physics Letters, 2002, 81(20):3873-3875. |
[7] | TALLURY S S, PASQUINELLI M A. Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes[J]. The Journal of Physical Chemistry B, 2010, 114(12):4122-4129. |
[8] | TALLURY S S, PASQUINELLI M A. Molecular dynamics simulations of polymers with stiff backbones interacting with single-walled carbon nanotubes[J]. The Journal of Physical Chemistry B, 2010, 114(29):9349-9355. |
[9] | ROY D, BHATTACHARYYA S, RACHAMIM A, et al. Measurement of interfacial shear strength in single wall carbon nanotubes reinforced composite using Raman spectroscopy[J]. Journal of Applied Physics, 2010, 107(4):043501. |
[10] | BHATTACHARYYA S, SALVETAT J P, SABOUNGI M L. Reinforcement of semicrystalline polymers with collagen-modified single walled carbon nanotubes[J]. Applied Physics Letters, 2006, 88(23):233119. |
[11] | LI Q, ZAISER M, BLACKFORD J R, et al. Mechanical properties and microstructure of single-wall carbon nanotube/elastomeric epoxy composites with block copolymers[J]. Materials Letters, 2014, 125:116-119. |
[12] | PANDE S, MATHUR R, SINGH B, et al. Synthesis and characterization of multiwalled carbon nanotubes-polymethyl methacrylate composites prepared by in situ polymerization method[J]. Polymer Composites, 2009, 30(9):1312-1317. |
[13] | GUO P, SONG H, CHEN X. Interfacial properties and microstructure of multiwalled carbon nanotubes/epoxy composites[J]. Materials Science And Engineering A:Structural Materials Properties Microst, 2009, 517(1):17-23. |
[14] | GOH H, GOH S, XU G, et al. Dynamic mechanical behavior of in situ functionalized multi-walled carbon nanotube/phenoxy resin composite[J]. Chemical Physics Letters, 2003, 373(3):277-283. |
[15] | HWANG G L, SHIEH Y T, HWANG K C. Efficient load transfer to polymer-grafted multiwalled carbon nanotubes in polymer composites[J]. Advanced Functional Materials, 2004, 14(5):487-491. |
[16] | LI J, FANG Z, TONG L, et al. Improving dispersion of multiwalled carbon nanotubes in polyamide 6 composites through amino-functionalization[J]. Journal of Applied Polymer Science, 2007, 106(5):2898-2906. |
[17] | WEI H F, HSIUE G H, LIU C Y. Surface modification of multi-walled carbon nanotubes by a sol-gel reaction to increase their compatibility with PMMA resin[J]. Composites Science and Technology, 2007, 67(6):1018-1026. |
[18] | NAMILAE S, CHANDRA N. Multiscale model to study the effect of interfaces in carbon nanotube-based composites[J]. Journal of Engineering Materials and Technology, 2005, 127(2):222-232. |
[19] | ZHU J, KIM J, PENG H, et al. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization[J]. Nano Letters, 2003, 3(8):1107-1113. |
[20] | GU H, TAFAKAMALLA S, ZHANG X, et al. Epoxy resin nanosuspensions and reinforced nanocomposites from polyaniline stabilized multi-walled carbon nanotubes[J]. Journal of Materials Chemistry C, 2013, 1(4):729-743. |
[21] | BARBER A H, COHEN S R, EITAN A, et al. Fracture transitions at a carbon-nanotube/polymer interface[J]. Advanced Materials, 2006, 18(1):83-87. |
[22] | MA P-C, MO S-Y, TANG B-Z, et al. Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites[J]. Carbon, 2010, 48(6):1824-1834. |
[23] | JIN F L, MA C J, PARK S J. Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes[J]. Materials Science and Engineering A, 2011, 528(29):8517-8522. |
[24] | SHEN J, HUANG W, WU L, et al. The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites[J]. Composites Science and Technology, 2007, 67(15):3041-3050. |
[25] | YU M F, YAKOBSON B I, RUOFF R S. Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes[J]. Journal of Physical Chemistry B, 2000, 104(37):8764-8767. |
[26] | QIAN D, LIU W K, RUOFF R S. Load transfer mechanism in carbon nanotube ropes[J]. Composites Science and Technology, 2003, 63(11):1561-1569. |
[27] | RAHMAT M, HUBERT P. Carbon nanotube-polymer interactions in nanocomposites:a review[J]. Composites Science and Technology, 2011, 72(1):72-84. |
[28] | BYRNE M T, GUNKO Y K. Recent advances in research on carbon nanotube-polymer composites[J]. Advanced Materials, 2010, 22(15):1672-1688. |
[29] | SPITALSKY Z, TASIS D, PAPAGELIS K, et al. Carbon nanotube-polymer composites:chemistry, processing, mechanical and electrical properties[J]. Progress in Polymer Science, 2010, 35(3):357-401. |
[30] | AL-SALEH M H, SUNDARARAJ U. Review of the mechanical properties of carbon nanofiber/polymer composites[J]. Composites Part A:Applied Science and Manufacturing, 2011, 42(12):2126-2142. |
[31] | HAN Z, FINA A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites:a review[J]. Progress in Polymer Science, 2011, 36(7):914-944. |
[32] | MONIRUZZAMAM M, WINEY K I. Polymer nanocomposites containing carbon nanotubes[J]. Macromolecules, 2006, 39(16):5194-5205. |
[33] | BREUER O, SUNDARARAJ U. Big returns from small fibers:a review of polymer/carbon nanotube composites[J]. Polymer Composites, 2004, 25(6):630-645. |
[34] | WAGNER H D. Polymer carbon nanotube composites:preparation, properties and applications[M]. Cambridge:Woodhead Publishing Ltd, 2011, 400-427. |
[35] | MARTINEZ-RUBI Y, GUAN J, LIN S, et al. Rapid and controllable covalent functionalization of single-walled carbon nanotubes at room temperature[J]. Chem Commun, 2007, 48):5146-5148. |
[36] | BAIBARAC M, BALTOG I, LEFRANT S. Raman spectroscopic evidence for interfacial interactions in poly (bithiophene)/single-walled carbon nanotube composites[J]. Carbon, 2009, 47(5):1389-1398. |
[37] | LUCAS M, YOUNG R. Effect of uniaxial strain deformation upon the Raman radial breathing modes of single-wall carbon nanotubes in composites[J]. Physical Review B, 2004, 69(8):085405. |
[38] | LEFRANT S, BUISSON J, SCHREIBER J, et al. Raman studies of carbon nanotubes and polymer nanotube composites[J]. Molecular Crystals and Liquid Crystals, 2004, 415(1):125-132. |
[39] | SCHADLER L, GIANNARIS S, AJAYAN P. Load transfer in carbon nanotube epoxy composites[J]. Applied Physics Letters, 1998, 73(26):3842-3844. |
[40] | RASHEED A, CHAE H G, KUMAR S, et al. Polymer nanotube nanocomposites:Correlating intermolecular interaction to ultimate properties[J]. Polymer, 2006, 47(13):4734-4741. |
[41] | CHANG T, JENSEN L R, KISLIUK A, et al. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite[J]. Polymer, 2005, 46(2):439-444. |
[42] | CHEN X, ZHANG L, ZHENG M, et al. Quantitative nanomechanical characterization of the van der Waals interfaces between carbon nanotubes and epoxy[J]. Carbon, 2015, 82:214-228. |
[43] | TSUDA T, OGASAWARA T, DENG F, et al. Direct measurements of interfacial shear strength of multi-walled carbon nanotube/PEEK composite using a nano-pullout method[J]. Composites Science and Technology, 2011, 71(10):1295-1300. |
[44] | ZHAO Q, WAGNER H D. Raman spectroscopy of carbon-nanotube-based composites[J]. Philosophical Transactions of the Royal Society of London Series A:Mathemat, 2004, 362(1824):2407-2424. |
[45] | YANG L, TONG L, HE X. MD simulation of carbon nanotube pullout behavior and its use in determining mode I delamination toughness[J]. Computational Materials Science, 2012, 55:356-364. |
[46] | FRANKLAND S, CAGLAR A, BRENNER D, et al. Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces[J]. Journal of Physical Chemistry B, 2002, 106(12):3046-3048. |
[47] | BOHLEN M, BOLTON K. Molecular dynamics studies of the influence of single wall carbon nanotubes on the mechanical properties of poly (vinylidene fluoride)[J]. Computational Materials Science, 2013, 68:73-80. |
[48] | COTO B, ANTIA I, BARRIGA J, et al. Influence of the geometrical properties of the carbon nanotubes on the interfacial behavior of epoxy/CNT composites:a molecular modelling approach[J]. Computational Materials Science, 2013, 79:99-104. |
[49] | GOU J, MINAIE B, WANG B, et al. Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites[J]. Computational Materials Science, 2004, 31(3):225-236. |
[50] | ZHENG Q, XUE Q, YAN K, et al. Effect of chemisorption on the interfacial bonding characteristics of carbon nanotube-polymer composites[J]. Polymer, 2008, 49(3):800-808. |
[51] | GURU K, MISHRA S, SHUKLA K. Effect of temperature and functionalization on the interfacial properties of CNT reinforced nanocomposites[J]. Applied Surface Science, 2015, 349:59-65. |
[52] | GANESAN Y, SALAHSHOOR H, PENG C, et al. Fracture toughness of the sidewall fluorinated carbon nanotube-epoxy interface[J]. Journal of Applied Physics, 2014, 115(22):224305. |
[53] | BARBER A H, COHEN S R, KENIG S, et al. Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix[J]. Composites Science and Technology, 2004, 64(15):2283-2289. |
[54] | FRANKLAND S, HARIK V. Analysis of carbon nanotube pull-out from a polymer matrix[J]. Surface Science, 2003, 525(1):103-108. |
[55] | AL-OSTAZ A, PAL G, MANTENA P R, et al. Molecular dynamics simulation of SWCNT-polymer nanocomposite and its constituents[J]. Journal of Materials Science, 2008, 43(1):164-173. |
[56] | ZHENG Q, XIA D, XUE Q, et al. Computational analysis of effect of modification on the interfacial characteristics of a carbon nanotube-polyethylene composite system[J]. Applied Surface Science, 2009, 255(6):3534-3543. |
[57] | LI Y, LIU Y, PENG X, et al. Pull-out simulations on interfacial properties of carbon nanotube-reinforced polymer nanocomposites[J]. Computational Materials Science, 2011, 50(6):1854-1860. |
[58] | CHOWDHURY S, OKABE T. Computer simulation of carbon nanotube pull-out from polymer by the molecular dynamics method[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(3):747-754. |
[59] | ⅡJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58. |
[60] | DRESSELHAUS M S, DRESSELHAUS G, Eklund P C. Science of fullerenes and carbon nanotubes:their properties and applications[M]. Academic Press, 1996. |
[61] | SAITO R, DRESSELHAUS G, DRESSELHAUS M S. Physical properties of carbon nanotubes[M]. World Scientific, 1998. |
[62] | HARRIS P J, HARRIS P J F. Carbon nanotubes and related structures:new materials for the twenty-first century[M]. Cambridge University Press, 2001. |
[63] | 孙伟峰, 高俊国, 郭宁. 碳纳米管/聚乙烯复合物分子动力学模拟研究[J]. 复合材料学报, 2014, 31(2):286-294. SUN W F, GAO J G, GUO N. Molecular dynamics simulation study of carbon nanotube/polyethylene nanocomposites[J]. Acta Materiae Compositae Sinica, 2014, 31(2):286-294 (in Chinese). |
[64] | 侯立晨, 刘海辉, 王宁, 等. 功能化碳纳米管的制备及功能化碳纳米管/尼龙 6 复合纤维[J]. 复合材料学报, 2013, 30(1):45-53. HOU L C, LIU H H, WANG N, et al. Preparation and characterization of carbocylic multi-carbon nanotubes/PA6 composites by solution maxing process[J]. Acta Materiae Compositae Sinica, 2013, 30(1):45-53 (in Chinese). |
[65] | SALVETAT J P, BRIGGS G A D, BONARD J M, et al. Elastic and shear moduli of single-walled carbon nanotube ropes[J]. Physical review letters, 1999, 82(5):944. |
[66] | EBBESEN T, LEZEC H, HIURA H, et al. Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382(6586):54-56. |
[67] | BERBER S, KWON Y K, TOMANEK D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84(20):4613. |
[68] | WOOD J, ZHAO Q, WAGNER H. Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy[J]. Composites Part A:Applied Science and Manufacturing, 2001, 32(3):391-399. |
[69] | COLEMAN J N, BLAU W J, DALTON A B, et al. Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives[J]. Applied Physics Letters, 2003, 82(11):1682-1684. |
[70] | KASHIWAGI T, FAGAN J, DOUGLAS J F, et al. Relationship between dispersion metric and properties of PMMA/SWNT nanocomposites[J]. Polymer, 2007, 48(16):4855-4866. |
[71] | WANG Z, LIANG Z, WANG B, et al. Processing and property investigation of single-walled carbon nanotube (SWCNT) buckypaper/epoxy resin matrix nanocomposites[J]. Composites Part A:Applied Science and Manufacturing, 2004, 35(10):1225-1232. |
[72] | QIAN D, DICKEY E C, ANDREWS R, et al. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites[J]. Applied Physics Letters, 2000, 76(20):2868-2870. |
[73] | TANG L G, KARDOS J L. A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix[J]. Polymer Composites, 1997, 18(1):100-113. |
[74] | AJAYAN P, STEPHAN O, COLLIEX C, et al. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite[J]. Science, 1994, 265(5176):1212-1214. |
[75] | NING N, FU S, ZHANG W, et al. Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization[J]. Progress in Polymer Science, 2012, 37(10):1425-1455. |
[76] | HIURA H, EBBESEN T, TANIGAKI K, et al. Raman studies of carbon nanotubes[J]. Chemical Physics Letters, 1993, 202(6):509-512. |
[77] | HADJIEV V, WARREN G, SUN L, et al. Raman microscopy of residual strains in carbon nanotube/epoxy composites[J]. Carbon, 2010, 48(6):1750-1756. |
[78] | LACHMAN N, BARTHOLOME C, MIAUDET P, et al. Raman response of carbon nanotube/PVA fibers under strain[J]. Journal of Physical Chemistry C, 2009, 113(12):4751-4754. |
[79] | LOPEZ-MANCHADO M, BIAGIOTTI J, VALENTINI L, et al. Dynamic mechanical and Raman spectroscopy studies on interaction between single-walled carbon nanotubes and natural rubber[J]. Journal of Applied Polymer Science, 2004, 92(5):3394-3400. |
[80] | MU M, OSSWALD S, GOGOTSI Y, et al. An in situ Raman spectroscopy study of stress transfer between carbon nanotubes and polymer[J]. Nanotechnology, 2009, 20(33):335703. |
[81] | SHARMA K, SEN KAUSHALYAYAN K, SHUKLA M. Pull-out simulations of interfacial properties of amine functionalized multi-walled carbon nanotube epoxy composites[J]. Computational Materials Science, 2015, 99:232-241. |
[82] | LIAO K, LI S. Interfacial characteristics of a carbon nanotube-polystyrene composite system[J]. Applied Physics Letters, 2001, 79(25):4225-4227. |
[83] | ZHENG Q, XUE Q, YAN K, et al. Influence of chirality on the interfacial bonding characteristics of carbon nanotube polymer composites[J]. Journal of Applied Physics, 2008, 103(4):044302. |
[84] | LUO Y, ZHAO Y, CAI J, et al. Effect of amino-functionalization on the interfacial adhesion of multi-walled carbon nanotubes/epoxy nanocomposites[J]. Materials & Design, 2012, 33:405-412. |
[85] | YOONESSI M, LEBRON-COLON M, SCHEIMAN D, et al. Carbon Nanotube Epoxy Nanocomposites:The Effects of interfacial modifications on the dynamic mechanical properties of the nano composites[J]. ACS Applied Materials & Interfaces, 2014, 6(19):16621-16630. |