|
- 2017
形状记忆环氧树脂及其四枚缎纹碳纤维织物增强环氧树脂的动态力学性能
|
Abstract:
采用动态力学分析仪对研制的形状记忆环氧树脂(Shape memory epoxy polymer,SMEP)及三种四枚缎纹碳纤维织物增强环氧树脂复合材料的动态力学性能进行了测试,测出了玻璃化转变温度Tg、储能模量E和损耗角正切值tan δ。试验表明,SMEP及四枚缎纹碳纤维织物增强环氧树脂复合材料均有显著的相变力学行为特征,相变前后E差异超过一个量级,表明其具有良好形状记忆能力。在SMEP中植入碳纤维织物增强复合材料会导致Tg和tan δ降低,而E显著增强;对同一种编织物的形状记忆复合材料经向和纬向的Tg和tan δ基本相同,但E相差较大。 The dynamic mechanical properties of shape memory epoxy polymer (SMEP) and 4-harness satin carbon fiber weave reinforced composites were tested by DMA 8000, the glass-transition temperature Tg, the storage modulus E, the tangent of loss angle tan δ were calculated. The experimental results indicate that SMEP and 4-harness satin carbon fiber weave reinforced composites have significant phase transition mechanical behavior, in which E differs beyond one-order around Tg. This prove that the SMEP and 4-harness satin carbon fiber weave reinforced composites have good shape memory capacity. The thermoset SMEP involved with three kinds of carbon fiber weave reinforced composites will lead to Tg and tan δ reduction, but E is significantly enlarged. Tg and tan δ of the same SMEP carbon fiber weave reinforced composites are almost in common, but E differs greatly in its warp direction and weft direction. 航天先进技术联合研究中心技术创新项目(USCAST2015-24)
[1] | 冷劲松, 兰鑫, 刘彦菊, 等. 形状记忆聚合物复合材料及其在空间可展开结构中的应用[J]. 宇航学报, 2010, 31(4):950-956. LENG J S, LAN X, LIU Y J, et al. Shape memory polymers composites and application in deployable structures[J].Journal of Astronautics, 2010, 31(4):950-956 (in Chinese). |
[2] | HU J. Shape memory polymers and textiles[M]. Boca Raton: CRC Press, 2007:28-61. |
[3] | GUNES S I, JANA S C. Shape memory polymers and their nanocomposites: A review of science and technology of new multifunctional materials[J]. Journal of Nanoscience & Nanotechnology, 2008, 8(4):1616-1637. |
[4] | 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12. |
[5] | DYANA MERLINE J, REGHUNADHAN N C P, NINAN K N. Synthesis, characterization, curing and shape memory properties of epoxy-polyether system[J]. Journal of Macromole-cular Science Part A: Pure & Applied Chemistry, 2008, 45(4):312-322. |
[6] | 魏堃, 朱光明, 唐玉生, 等. 热固性环氧树脂形状记忆聚合物的研究进展[J]. 高分子材料科学与工程, 2012, 28(8):183-186. WEI K, ZHU G M, TANG Y S, et al. Research progress in thermoset shape memory epoxy resin[J]. Polymer Materials Science and Engineering, 2012, 28(8):183-186 (in Chinese). |
[7] | FRANCIS W H, LAKE M S, HINKLE J S. A review of classical fiber microbuckling analytical solutions for use with elastic memory composites[C]//47th AIAA/ASME/ASCE/AHS/ASC Structure, Structural Dynamic, and Materials Conference. Newport, Rhode Island, 2006:2006-1764. |
[8] | LIANG C, ROGERS C A, MALAFEEW E J. Investigation of shape memory polymers and their hybrid composites[J]. Journal of Intelligent Material Systems & Structures, 1997, 8(4):380-386. |
[9] | 王振清, 雷红帅, 周博, 等. 基于内聚力的形状记忆合金纤维增强树脂基复合材料的模拟分析[J]. 复合材料学报, 2012, 29(5):236-243. WANG Z Q, LEI H S, ZHOU B, et al. Simulation and analysis on short-cut shape memory alloy reinforced epoxy composite based on cohesive zone model[J]. Acta Materiae Compositae Sinica, 2012, 29(5):236-243 (in Chinese). |
[10] | LIU Y, GALL K, DUNN M L, et al. Thermomechanics of shape memory polymer nanocomposites[J]. Mechanics of Materials, 2004, 36(10):929-940. |
[11] | WU X, LIU Y, LENG J. Shape memory polymer composite filled with carbon nanotube[C]//Proceedings of SPIE Conference. San Diego, California, USA: SPIE, 2010: 764422-764422-8. |
[12] | BEHL M, LENDLEIN A. Shape-memory polymers[J]. Materials Today, 2007, 10(4):20-28. |
[13] | LENG J, WU X, LIU Y. Effect of a linear monomer on the thermomechanical properties of epoxy shape-memory polymer[J]. Smart Materials & Structures, 2009, 18(9):7566-7579. |
[14] | JEON H, MATHER P, HADDAD T. Shape memory and nanostructure in poly (norbornyl-POSS) copolymers[J]. Po-lymer International, 2000, 49(5):453-457. |
[15] | CAMPBELL D, LAKE M S, SCHERBARTH M R. Elastic memory composite material: An enabling technology for future furlable space structures[C]//47th AIAA/ASME/ASCE/AHS/ASC Structure, Structural Dynamic, and Materials Conference. Austin, Texas, 2005: 2005-2362. |
[16] | LENG J, LV H, LIU Y, et al. Synergic effect of carbon black and short carbon fiber on shape memory polymer actuation by electricity[J]. Journal of Applied Physics, 2008, 104(10): 104917-104917-4. |
[17] | RATNA D, KARGER-KOCSIS J. Recent advances in shape memory polymers and composites: A review[J]. Journal of Materials Science, 2008, 43(1):254-269. |
[18] | LAN X, WANG X H, LIU Y J, et al. Fiber reinforced shape-memory polymer composite and its application in deployable hinge in space[J]. Smart Materials & Structures, 2009, 18(2):1282-1294. |
[19] | LENG J, LV H, LIU Y, et al. Electroactivate shape-memory polymer filled with nanocarbon particles and short carbon fibers[J]. Applied Physics Letters, 2007, 91(14):144105-144105-3. |
[20] | REZANEJAD S, KOKABI M. Shape memory and mechanical properties of cross-linked polyethylene/clay nanocomposites[J]. European Polymer Journal, 2007, 43(7):2856-2865. |
[21] | GALL K, DUNN M L, LIU Y, et al. Shape memory polymer nanocomposites[J]. Acta Materialia, 2002, 50(20):5115-5126. |
[22] | 沈珉, 郝培. 颗粒增强复合材料非理想界面刚度和有效模量的理论估计[J]. 复合材料学报, 2016, 33(1):189-197. SHEN M, HAO P. Theoretical estimation of imperfect interfacial stiffness and effective modulus in particle reinforced composites[J]. Acta Materiae Compositae Sinica, 2016, 33(1):189-197. |
[23] | LENG J, LV H, LIU Y, et al. Electroactivate shape memory polymer filled with nanocarbon particles and short carbon fibers[J]. Applied Physics Letters, 2007, 91(14):144105-144105-3. |
[24] | ZHENG N. High strain epoxy shape memory polymer[J]. Polymer Chemistry, 2015, 6(16):3046-3053. |