|
- 2018
腐蚀Al箔集流体对球状LiFePO4/C复合材料电性能的影响
|
Abstract:
以Fe (NO3)39H2O、H3PO4、HNO3为原料,采用液相结晶法制备类球状FePO4前驱体,后续运用高温固相还原法制备球状LiFePO4/C复合材料。对腐蚀后的Al箔进行SEM、金相显微镜和测厚规表征分析。以腐蚀后的Al箔作为Li离子电池正极材料LiFePO4/C复合材料的集流体时进行电性能测试,结果表明:腐蚀Al箔表面形成密集有序的三维微方孔,内部也形成了密集的隧道孔且Al箔厚度减少了14.29%。以腐蚀后Al箔作为集流体时,LiFePO4/C复合材料的电性能得到改善,在0.1 C下首次放电容量为153 mAh·g-1,电极反应电阻为51.12 Ω,且具有良好的倍率性能和循环稳定性能。 Using Fe(NO3)39H2O, H3PO4, HNO3 as the raw materials, the semi-sphere FePO4 precursors were prepared by liquid phase crystallization method, and then the sphere LiFePO4/C composite was synthesized by high temperature solid phase method. The corrosive Al foils were characterized by SEM, metalloscope and feeler gauge. The corrosive Al foils were used as the current collector of cathode LiFePO4/C composite of Li ion battery. The result shows that the surface of corrosive Al foil have 3D dense ordered micro square porous and possessing dense tunnels in the inner and the thickness of Al foil is decreased by 14.29%.The initial discharge capacity at 0.1 C is 153 mAh·g-1 and the electrode react resistance is 51.12 Ω. LiFePO4/C composite has good rate property and cycle stability. 贵州省科技厅工业攻关项目(黔科合GY字[2012]3024)
[1] | BARKER J, PYNENBURG R, KOKSBANG R, et al. An electrochemical investigation into the lithium insertion properties of LixCoO2[J]. Electrochim Acta, 1996, 41(15):2481-2488. |
[2] | 任丽, 韩杨. 聚吡咯/磷酸铁锂复合正极材料的制备与表征[J]. 复合材料学报, 2012, 29(5):41-46. REN L, HAN Y. Preparation and characterization of PPy/LiFePO4 composite material as cathode[J]. Acta Materiae Compositae Sinica, 2012, 29(5):41-46(in Chinese). |
[3] | 陈宗宗, 张瑞丰. 基于Polymer-S-C/SiO2 多层结构大孔电极锂硫离子电池的制备与性能[J]. 复合材料学报, 2014, 31(2):525-531. CHEN Z Z, ZHANG R F. Preparation and performance of lithium-sulfur batteries based on multilayer structure in polymer-S-C/SiO2 macroporous electrodes[J]. Acta Materiae Compositae Sinica, 2014, 31(2):525-531(in Chinese). |
[4] | YANG S L, ZHOU X F, ZHANG J G, et al. Morphology-controlled solvothermal synthesis of LiFePO4 as a cathode material for lithium-ion batteries[J]. Journal of Chemistry, 2010, 20(37):8086-8091. |
[5] | WANG Y, SUN B, PARK J, et al. Morphology control and electrochemical properties of nanosize LiFePO4 cathode material synthesized by co-precipitation combined with in situ polymerization[J]. Journal of Alloys and Compounds, 2011, 509(3):1040-1044. |
[6] | CUI Q, AKIKUSA J, NAKANISHI S, et al. Effect of surface treatment for aluminum foils on discharge properties of lithium-ion battery[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7):2314-2319. |
[7] | LIPSON A L, PROFFIT D L, PAN B, et al. Current collector corrosion in Ca-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(8):1574-1578. |
[8] | ZHOU D, QIU X C, LIANG F, et al. Comparison of the effects of FePO4 and FePO4·2H2O as precursors on the electrochemical performances of LiFePO4/C[J]. Ceramics International, 2017, 43(16):13254-13263. |
[9] | GAO F, TANG Z Y. Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries[J]. Electrochim Acta, 2008, 53(15):5071-5075. |
[10] | SUNDARAYYA Y, KUMARA C S, SUNANDNA C S. Oxalate based non-aqueous sol-gel synthesis of phase pure submicron LiFePO4[J]. Materials Research Bulletin, 2007, 42(11):1942-1948. |
[11] | 巩桂芬, 王磊, 徐阿文. 静电纺PMMA/EVOH-SO3Li锂离子电池隔膜复合材料的制备及性能[J]. 复合材料学报, 2018, 35(3):477-484. GONG G F, WANG L, XU A W. Preparation and properties of PMMA/EVOH-SO3Li Li-ion battery separator composite by electrospinning[J]. Acta Materiae Compositae Sinica, 2018, 35(3):477-484(in Chinese). |
[12] | PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B D. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electroche-mical Society, 1997, 144(4):1188-1194. |
[13] | GAO Y, DAHN J R. The high temperature phase diagram of Li1+xMn2-xO4 and its implications[J]. Journal of the Electrochemical Society, 1996, 143(6):1783-1788. |
[14] | 赵煜娟, 杜翠薇, 余仲宝, 等. 锂离子蓄电池正极材料LiNi1-yCoyO2的合成及性能[J]. 电源技术, 2002, 26(5):369-372. ZHAO Y J, DU C W, YU Z B, et al. Synthesis and properties of cathode materials LiNi1-yCoyO2 for Li-ion battery[J]. Chinese Journal of Power Sources, 2002, 26(5):369-372(in Chinese). |
[15] | 饶帆, 陈爱华, 赵永彬. 锂离子电池正极材料LiNi0.8Co0.15Al0.05O2 的制备与性能[J]. 复合材料学报, 2018, 35(4):946-956. RAO F, CHEN A H, ZHAO Y B. Preparation and performance of LiNi0.8Co0.15Al0.05O2 cathode material of lithium ion battery[J]. Acta Materiae Compositae Sinica, 2018, 35(4):946-956(in Chinese). |
[16] | CHUNG S Y, BLOKING J T, CHIANG Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature Materials, 2002, 1(2):123-128. |
[17] | SUN C W, RAJASEKHARA S, GOODENOUGH J B, et al. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode[J]. Journal of the American Chemical Society, 2011, 133(7):2132-2135. |
[18] | MYUNG S T, HITOSHI Y, SUN Y K, et al. Electrochemical behavior and passivation of current collectors in lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 21(27):9891-9911. |
[19] | YI T F, LI Y M, LI X Y, et al. Enhanced electrochemical property of FePO4-coated LiNi0.5Mn1.5O4 as cathode materials for Li-ion battery[J]. Science Bulletin, 2017, 62(14):1004-1010. |
[20] | ZHAN T T, JIANG W F, LI C, et al. High performed composites of LiFePO4/3DG/C based on FePO4 by hydrothermal method[J]. Electrochimica Acta, 2017, 246:322-328. |
[21] | 赵曼, 肖仁贵, 廖霞, 等. 水热法以磷铁制备电池级磷酸铁的研究[J]. 材料导报, 2017, 31(10):25-31. ZHAO M, XIAO R G, LIAO X, et al. Hydrothermal preparation of battery-grade iorn phosphate from ferro-phosphorus[J]. Materials Review, 2017, 31(10):25-31(in Chinese). |