全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

静电纺丝制备金刚石/聚丙烯腈杂化复合纤维
Preparation and thermal properties of the diamond/polyacrylonitrile composite fibers generated from electrospinning

DOI: 10.13801/j.cnki.fhclxb.20180122.003

Keywords: 静电纺丝,聚丙烯腈共聚物,金刚石,复合纤维,导热率,有机无机杂化
electrospinning
,polyacrylonitrile copolymers,diamond,composite fibers,thermal conductivity,organic-inorganic hybrid

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了改善金刚石在聚合物中的均匀分散性,并提高导热性能,以不同粒度的金刚石和聚丙烯腈(PAN)共聚物为原料,采用静电纺丝方法制备得到金刚石/PAN杂化复合纤维。通过改变纺丝溶液中金刚石的添加量,研究了不同金刚石含量及不同粒度的金刚石对金刚石/PAN杂化复合纤维形态和热性能的影响。研究结果表明,静电纺丝可以有效解决微米级金刚石在PAN聚合物中的分散问题,金刚石的粒度对纺丝的稳定性和连续性影响很大,粒度为0.5~1 μm的金刚石经过纺丝可以有效地包覆在纤维中。当金刚石的粒度大于1~2 μm时,纺丝时稳定性差,纤维中很少或几乎没有包覆金刚石颗粒。当金刚石粒度为0.5~1 μm、实际质量分数为38.5wt%时,金刚石/PAN杂化复合纤维热导率最高,达到1.923 W/(m·K)。 In order to increase the distribution of diamond particles and the thermal conductivity of polyacrylonitrile(PAN) copolymers, the diamond/PAN hybrid composite fibers were obtained via electrospinning using PAN and different sized diamonds as raw materials. The effects of different contents and various sizes of diamond on the morphology and thermal properties of diamond/PAN composite fibers were studied with changing the mass fraction of diamond addition. The results show that electrospinning can give the ability to deliver microdiamonds in the form of well-dispersed particles into the polymer matrix, and the stability and continuity of the spinning are greatly affected by the particle size of the diamonds. The size of diamond of 0.5-1 μm can be effectively coated in the diamond/PAN fiber, and the thermal conductivity of diamond/PAN fibers reaches 1.923 W/(m·K) when the actual mass fraction of diamond is 38.5wt%. However, when the size of diamond particles is greater than 1-2 μm, the stability of the spinning is poor. As a result, it will lead to the diamond being little or not even appearing in the diamond/PAN fibers. 国家自然科学基金(51602356);河南省高校科技创新团队项目(151RTSTHN004);教育厅重点项目(18A430035)

References

[1]  吴贺君, 董知韵, 卢灿辉, 等. 固相剪切碾磨对Al/低密度聚乙烯导热复合材料结构与性能的影响[J]. 复合材料学报, 2017, 34(3):530-539. WU H J, DONG Z Y, LU C H, et al. Effect of solid-state shear milling on the structures and properties of thermally conductive Al/LLDPE composites[J]. Acta Materiae Compositae Sinica, 2017, 34(3):530-539(in Chinese).
[2]  ZENG X L, SUN J J, YAO Y M, et al. A combiation of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity[J]. ACS Nano, 2017, 11(5):5167-5178.
[3]  张旺玺, 穆云超, 梁宝岩, 等. 金刚石先进复合材料的研究及应用[J]. 超硬材料工程, 2014, 26(3):10-13. ZHANG W X, MU Y C, LIANG B Y, et al. Application and development of advanced diamond composites[J]. Superhard Material Engineering, 2014, 26(3):10-13(in Chinese).
[4]  RENEKER D H, YARIN A L. Eleetrospinning jets and polymer nanofibres[J]. Polymer, 2008, 49:2387-2425.
[5]  张旺玺. 电纺丝制备PAN基纳米碳纤维[J]. 纺织科学研究, 2010, 21(3):1-7. ZHANG W X. Electrospinning prepared polyacrylonitrile carbon nanofibers[J]. Textile Science Research, 2010, 21(3):1-7(in Chinese).
[6]  BEHLER K D, STRAVATO A, MOCHALIN V, et al. Nanodiamond-polymer composite fibers and coatings[J]. ACS Nano, 2009, 3(2):363-369.
[7]  朱明华, 胡坪. 仪器分析第4版[M]. 北京:高等教育出版社, 2008. ZHU M H, HU P. Instrumental analysis:Version 4[M]. Beijing:Higher Education Press, 2008(in Chinese).
[8]  辛东坡, 覃小红, 王善元. 静电纺纳米纤维非织造布的热湿传递性能[J]. 东华大学学报(自然科学版), 2009, 35(2):148-152. XIN D P, QIN X H, WAGN S Y. Thermal and moisture transport properties of electrospun nanofiber non-woven fabric[J]. Journal of Donghua University(Natural Science), 2009, 35(2):148-152(in Chinese).
[9]  MOORE A L, CUMMINGS A T, JENSEN J M, et al. Thermal conductivity measurements of nylon 11 carbon nanofiber nanocomposites[J]. Journal of Heat Transfer, 2009, 131(9):773-776.
[10]  FENG W, QIN M, FENG Y. Toward highly thermally conductive all-carbon composites:Structure control[J]. Carbon, 2016, 109:575-597.
[11]  PUNETHA V D, RANA S, YOO H J, et al. Functiona-lization of carbon nanomaterials for advanced polymer nano-composites:A com-parison study between CNT and graphene[J]. Progress in Polymer Science, 2017, 67:1-47.
[12]  WU S, LADANI R B, ZHANG J, et al. Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites[J]. Carbon, 2015, 94:607-618.
[13]  NORKHAIRUNNISA M, AZIZAN A, MARIATTI M, et al. Thermal stability and electrical behavior of polydimethylsiloxane nanocomposites with carbon nanotubes and carbon black fillers[J]. Journal of Composite Materials, 2012, 46(8):903-910.
[14]  WANG W, BIAN W, YANG Y. Incorporation of nano-diamond into an epoxy polymer network with high thermal conductivity for electrical insulations[C]//IEEE International Conference on Dielectrics. Montpellier:IEEE, 2016:868-871.
[15]  KHAN W S, ASMATULU R, AHMED I, et al. Thermal conductivities of electrospun PAN and PVP nanocomposite fibers incorporated with MWCNTs and NiZn ferrite nano-particles[J]. International Journal of Thermal Sciences, 2013, 71(9):74-79.
[16]  陈金, 王春锋, 王永亮, 等. 纳米Al2O3分布对Al2O3/PE-EVA复合材料导热性能与力学性能的影响[J]. 复合材料学报, 2015, 32(5):1286-1293. CHEN J, WANG C H, WANG Y L, et al. Effcets of nano Al2O3 distribution on thermal conductivity and mechanical property of Al2O3/PE-EVA composites[J]. Acta Materiae Compositae Sinica, 2015, 32(5):1286-1293(in Chinese).
[17]  刘加奇, 卢咏来, 杨海波, 等. 粒子空间分布与复合材料导热性能关系的模拟研究[J]. 复合材料学报, 2011, 28(5):12-19. LIU J Q, LU Y L, YANG H B, et al. Numerical investigation of the effect of partical spatial distribution on the thermal conductivity of composites[J]. Acta Materiae Compositae Sinica, 2011, 28(5):12-19(in Chinese).
[18]  WANG X, HO V, SEGALMAN R A, et al. Thermal conductivity of high-modulus polymer fiber[J]. Macromolecules, 2013, 46(12):4937-4943.
[19]  SINGH V, BOUGHER T L, WEATHERS A, et al. High thermal conductivity of chain-oriented amorphous polythiophene[J]. Nature Nano-technology, 2014, 9(5):384-390.
[20]  吕青, 颜红侠, 刘超. 聚合物/定向石墨烯复合材料研究进展[J]. 工程塑料应用, 2016, 44(2):140-144. LV Q, YAN H X, LIU C. Research progress in polymer/aligned grapheme composites[J]. Engineering Plastics Application, 2016, 44(2):140-144(in Chinese).
[21]  CAI Z J, ZHU C, GUO J, et al. Electrospun carboxyl multiwalled carbon nanotubes grafted polyhydroxybutyrate composite nanofibers membrane scaffolds:Preparation, characterization and cytocompatibility[J]. Materials Science and Engineering C, 2018, 82:29-40.
[22]  王文轩. 基于纳米技术的新型界面散热材料[D]. 上海:上海大学, 2008. WANG W X. New interface heat dissipation material based on nanotechnology[D]. Shanghai:Shanghai University, 2008(in Chinese).
[23]  DATSYUK V, TROTSENKO S, REICH S. Carbon nanotube-polymer nanofibers with high thermal conductivity[J]. Carbon, 2013, 52(2):605-608.
[24]  李智璐, 贺爱华. 静电纺丝法制备聚合物功能纤维的研究进展[J]. 合成纤维, 2015, 44(2):28-33. LI Z L, HE A H. Progress of functional polymer fibers by electrospinning[J]. Synthetic Fiber in China, 2015, 44(2):28-33(in Chinese).
[25]  DELAVAR Z, SHOJAEI A. Enhanced mechanical properties of chitosan/nanodiamond composites by improving interphase using thermal oxidation of nanodiamond[J]. Car-Bohydrate Polymers, 2017, 167:219-228.
[26]  陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32(2):301-316. CHEN Y, GE E D, FU Y C, et al. Review and prospect of drilling technologies for carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica, 2015, 32(2):301-316(in Chinese).
[27]  SAMBUDI N S, KIM M G, PARK S B. The formation of web-like connection among electrospun chitosan/PVA fiber network by the reinforcement of ellipsoidal calcium carbon-ate[J]. Materials Science and Engineering C, 2016, 60:518-525.
[28]  ASHRAF A, ELHAMID M. Electrospinning optimization for precursor carbon nanofibers[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(10):1681-1687.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133