全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

蒙脱土-SiO2/低密度聚乙烯复合材料结晶行为及电树枝化特性
Crystallization behavior and electrical tree resistance property of momtmorillonite-SiO2/low density polyethylene composite

DOI: 10.13801/j.cnki.fhclxb.20180316.003

Keywords: 低密度聚乙烯,纳米蒙脱土,纳米SiO2,结晶行为,耐电树枝化性能
low density polyethylene
,montmorillonite,nano-SiO2,crystallization behavior,electrical tree resistance property

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了进一步改善低密度聚乙烯(LDPE)的耐电树枝化性能,以有机化蒙脱土(MMT)和表面改性的SiO2为纳米填料,采用熔融共混法制备了MMT-SiO2/LDPE多元复合材料。利用FTIR表征了纳米填料与LDPE基体间分子链相互作用。研究了纳米MMT和SiO2对LDPE结晶行为、结晶形态及耐电树枝化性能的影响。结果表明:纳米MMT和SiO2均通过改性剂长链与LDPE基体分子链以物理纠缠的形式混合在LDPE中。纳米SiO2异相成核形成小的晶体结构,与分散在无定形区的纳米MMT均对电树枝的发展具有阻挡作用,二者相互协同使MMT-SiO2/LDPE多元复合物材料中电树枝的发展路径更加曲折,因此MMT-SiO2/LDPE多元复合物材料耐电树枝性能优于MMT/LDPE和SiO2/LDPE复合材料。 In order to further improve the electrical tree resistance of low density polyethylene (LDPE), montmorillonite (MMT)-SiO2/LDPE multi-element composite was prepared by melt blending with the organic MMT and surface modified SiO2 as the inorganic nanofiller. The molecular chain interaction of filler and LDPE matrix was characterized by FTIR. The effects of inorganic fillers on crystallization behavior, crystallization morphology and the electrical tree resistance property of LDPE were investigated. The research results indicate that inorganic fillers are mixed in LDPE in the form of physical entanglement through the long chain of modifier and LDPE matrix. The heterogeneous nucleation of nano-SiO2 forms small crystal structure which impedes the development of electrical trees, the MMT dispersed in amorphous region has a blocking effect on the development of electrical trees. The combination makes the development path of the electrical trees in the MMT-SiO2/LDPE multi-element composite more torturous, resulting in the electrical tree resistance of the MMT-SiO2/LDPE multi-element composite being better than MMT/LDPE and SiO2/LDPE composites. 国家自然科学基金(51577045)

References

[1]  DU B X, ZHU L W. Electrical tree characteristics of XLPE under repetitive pulse voltage in low temperature[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2015, 22(4):1801-1808.
[2]  CHI X, GAO J, ZHANG X. Electrical tree propagating characteristics of polyethylene/nano-montmorillonite composites[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2015, 22(3):1530-1536.
[3]  迟晓红, 高俊国, 郑杰, 等. 聚丙烯中电树枝生长机理研究[J]. 物理学报, 2014, 63(17):298-305. CHI X H, GAO J G, ZHENG J, et al. The mechanism of electrical treeing propagation on polypropylene[J]. Acta Physica Sinica, 2014, 63(17):298-305(in Chinese).
[4]  SHIMIZU N, UCHIDA K, RASIKAWAN S. Electrical tree and deteriorated region in polyethylene[J]. IEEE Transactions on Electrical Insulation, 1992, 27(3):513-518.
[5]  SRIDHAR A, THOMAS M J. Electrical treeing in polyethylene:Effect of nano fillers on tree inception and growth[C]//2010 International Conference on High Voltage Engineering and Application. New Orleans:IEEE, 2010:576-579.
[6]  赵洪, 徐明忠, 杨佳明, 等. MgO/LDPE纳米复合材料抑制空间电荷及电树枝化特性[J]. 中国电机工程学报, 2012, 32(16):196-202. ZHAO H, XU M Z, YANG J M, et al. Space charge and electric treeing resistance properties of MgO/LDPE nanocomposite[J]. Proceedings of the CSEE, 2012, 32(16):196-202(in Chinese).
[7]  ALAPATI S, MELEDATH J T, KARMARKAR A. Effect of morphology on electrical treeing in low density polyethylene nanocomposites[J]. IET Science Measurement & Technology, 2014, 8(2):60-68.
[8]  张晓虹, 高俊国, 张金梅, 等. 聚乙烯/蒙脱土纳米复合物的显微结构及其树枝化性能[J]. 电工技术学报, 2009, 24(12):1-5. ZHANG X H, GAO J G, ZHANG J M, et al. Characteristics of microstructure and electrical treeing in PE/MMT nanocomposites[J]. Transactions of China Electrotechnical Society, 2009, 24(12):1-5(in Chinese).
[9]  迟晓红, 俞利, 郑杰, 等. 蒙脱土/聚丙烯复合材料结晶形态及耐电树枝化特性[J]. 复合材料学报, 2015, 32(1):76-84. CHI X H, YU L, ZHENG J, et al. Crystallization morpho-logy and electrical tree resistance characteristics of montmorillonite/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2015, 32(1):76-84(in Chinese).
[10]  章华中, 李剑, 梁勇, 等. 低密度聚乙烯-蒙脱土纳米复合材料的电树枝生长特性[J]. 中国电机工程学报, 2010, 30(31):137-142. ZHANG H Z, LI J, LIANG Y, et al. Growth properties of the electrical trees in LDPE-MMT nano-composites[J]. Proceedings of the CSEE, 2010, 30(31):137-142(in Chinese).
[11]  迟晓红. 纳米蒙脱土/聚烯烃复合材料结构形态与电树生长机理研究[D]. 哈尔滨:哈尔滨理工大学, 2015. CHI X H. Investigation on morphology of nano-montmorillonite/polyolefin composites and propagation mechanism of electrical tree[D]. Harbin:Harbin University of Science and Technology, 2015(in Chinese).
[12]  MA D, AKPALU Y A, LI Y, et al. Effect of Titania nano-particles on the morphology of low density polyethylene[J]. Journal of Polymer Science Part B:Polymer Physics, 2005, 43(5):488-497.
[13]  OLMOS D, DOMINGUEZ C, CSATRILLO P D, et al. Crystallization and final morphology of HDPE:Effect of the high energy ball milling and the presence of TiO2, nanoparticles[J]. Polymer, 2009, 50(7):1732-1742.
[14]  LAU K Y, VAUGHAN A S, CHEN G, et al. On the dielectric response of silica-based polyethylene nanocomposites[J]. Journal of Physics D:Applied Physics, 2013, 46(9):095303.
[15]  PANAITESCU D, CIUPRINA F, IORGA M, et al. Effects of SiO2 and Al2O3 nanofillers on polyethylene properties[J]. Journal of Applied Polymer Science, 2011, 122(3):1921-1935.
[16]  TJONG S C, LIANG G D, BAO S P. Electrical properties of low density polyethylene/ZnO nanocomposites:The effect of thermal treatments[J]. Journal of Applied Polymer Science, 2006, 102(2):1-5.
[17]  莫志深, 张宏放. X射线衍射方法测定聚合物结晶度[J]. 高分子材料科学与工程, 1988(3):9-20. MO Z S, ZHANG H F. Measurement of crystallinity of polymers by X-ray diffraction method[J]. Polymeric Materials Science and Engineering, 1988(3):9-20(in Chinese).
[18]  王翔, 郑玉婴, 曹宁宁, 等. 马来酸酐刻蚀芳纶纤维/尼龙6复合材料的制备及性能[J]. 复合材料学报, 2016, 33(8):1638-1644. WANG X, ZHENG Y Y, CAO N N, et al. Preparation and properties of aramid fibers/nylon 6 composites corroded by maleic anhydride[J]. Acta Materiae Compositae Sinica, 2016, 33(8):1638-1644(in Chinese).
[19]  袁玉珍, 邓尚民. 布拉格方程在高聚物结构研究中的应用[J]. 物理与工程, 1998(3):33-35. YUAN Y Z, DENG S M. The application of bragg's equation in the study of polymer structure[J]. Physics and Engineering, 1998(3):33-35(in Chinese).
[20]  张晓虹, 迟晓红, 高俊国, 等. 分形分析方法在电树枝结构研究中的应用[J]. 电工技术学报, 2013, 28(1):14-20. ZHANG X H, CHI X H, GAO J G, et al. Application of fractal analysis on researching shapes of electrical trees[J]. Transactions of China Eletrotechnical Society, 2013, 28(1):14-20(in Chinese).
[21]  CHEN X, MURDANY D, LIU D, et al. AC and DC pre-stressed electrical trees in LDPE and its aluminum oxide nanocomposites[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2016, 23(3):1506-1514.
[22]  李剑, 梁勇, 杨丽君, 等. 冷却介质对低密度聚乙烯电树枝老化特性的影响[J]. 高电压技术, 2010, 36(3):578-583. LI J, LIANG Y, YANG L J, et al. Influence of colling medium on electrical tree growing properties of LDPE[J]. High Voltage Engineering, 2010, 36(3):578-583(in Chinese).
[23]  ZHAO Y, VAUGHAN A S, CHAMPION J V, et al. The structure of electrical trees in semi-crystalline polymers[C]//2000 Eighth International Conference on Dielectric Materials, Measurements and Applications. Edinburgh:IEEE, 2002:314-319.
[24]  HOZUMI N, ISHIDA M, OKAMOTO T, et al. The influence of morphology on electrical tree initiation in polyethylene under AC and impulse voltages[J]. IEEE Transactions on Electrical Insulation, 1990, 25(4):707-714.
[25]  ZHOU Y, LUO X, YAN P, et al. Influence of morphology on tree growth in polyethylene[C]//Proceedings of 2001 International Symposium on Electrical Insulating Materials. Himeji:IEEE, 2001:194-197.
[26]  SHI Z X, ZHANG X H, GAO J G, et al. Investigation on electrical trees propagation characteristic in polyethylene based on etching method[J]. AIP Advances, 2017, 7(11):115012.
[27]  梁基照. 应用DSC测量HDPE熔体的热性能参数Ⅰ:熔融热焓与结晶度[J]. 上海塑料, 1994(3):23-25. LIANG J Z. The thermal performance parameters measure of HDPE melt by DSCⅠ:Heat enthalpy and crystallinity of molten heat[J]. Shanghai Plastics, 1994(3):23-25(in Chinese).
[28]  MA D, HUGENER T A, SIEGEL R W, et al. Influence of nanoparticle surface modification on the electrical behavior of polyethylene nanocomposites[J]. Nanotechnology, 2005, 16(6):724-731.
[29]  MA D, SIEGEL R W, HONG J I, et al. Influence of nano-particle surfaces on the electrical break-down strength of nanoparticle-filled low-density polyethylene[J]. Journal of Materials Research, 2004, 19(3):857-863.
[30]  PANAITESCU D M, FRONE A N, SPATARU I C. Effect of nano-silica on the morphology of polyethylene investigated by AFM[J]. Composites Science & Technology, 2013, 74(1):131-138.
[31]  AUGIS J A, BENNETT J E. Calculation of the Avrami parameters for heterogeneous solid-state reactions using a modification of the Kissinger method[J]. Journal of Thermal Analysis, 1978, 13(2):283-292.
[32]  JEZIORNY A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC[J]. Polymer, 1978, 19(10):1142-1144.
[33]  HOZUMI N, OKAMOTO T, FUKAGAWA H. TEM observation of electrical tree paths and microstructures in polyethylene[J]. Japanese Journal of Applied Physics, 1988, 27(7):1230-1233.
[34]  郑晓泉, CHEN G, DAVIES A E. 结晶状态对XLPE电缆绝缘中电树枝的影响[J]. 高电压技术, 2003, 29(11):5-6. ZHANG X Q, CHEN G, DAVIES A E. The influence of crystalline state on electrical tree in XLPE cable insulation[J]. High Voltage Engineering, 2003, 29(11):5-6(in Chinese).
[35]  高俊国, 胡海涛, 郑杰, 等. 聚丙烯结晶形态对树枝化放电特性的影响[J]. 绝缘材料, 2010, 43(3):47-50. GAO J G, HU H T, ZHENG J, et al. The impact of crystalline morphology on the electrical tree discharge characteristic of PP[J]. Insulation Materials, 2010, 43(3):47-50(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133