全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

钢纤维增强超高性能混凝土抗压性能的细观数值模拟
Microscopic numerical simulation of the uniaxial compression of steel fiber reinforced ultra-high performance concrete

DOI: 10.13801/j.cnki.fhclxb.20170831.001

Keywords: 钢纤维增强超高性能混凝土,单轴受压,形状效应,尺寸效应,纤维体积率,数值模拟
steel fiber reinforced ultra-high performance concrete (SF/UHPC)
,uniaxial compression,shape effect,size effect,fiber volume fraction,numerical simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用LS-DYNA软件在细观层次上建立了三维钢纤维增强超高性能混凝土(Steel fiber reinforced ultra-high performance concrete,SF/UHPC)圆柱体试件有限元模型,对其轴心受压下的力学性能和裂缝发展进行了数值模拟。在验证细观数值模型的有效性和合理性的基础上进行参数分析,着重研究了钢纤维体积率、钢纤维长径比、形状效应和尺寸效应对超高性能钢纤维混凝土抗压强度、韧性和破坏形态的影响。最终,根据模拟结果拟合了超高性能钢纤维混凝土抗压强度计算公式。结果表明:三维超高性能钢纤维混凝土细观模型可以较好地模拟单轴受压应力条件下混凝土的静力性能和损伤破坏机制,所拟合的公式也能较好地预测超高性能钢纤维混凝土的抗压强度。 The finite-element model of three-dimensional steel fiber reinforced ultra-high performance concrete (SF/UHPC) cylindrical specimen was developed on the mesoscopic level by utilizing LS-DYNA, and the mechanical properties and crack development of which under axial compression were numerically simulated. Based on the verification of the validity and rationality of above-mentioned mesoscopic numerical model, the effects of steel fiber volume fraction, aspect ratio, shape and size on compressive strength, toughness and failure mode of SF/UHPC were studied emphatically. Finally, the formula for predicting the compressive strength of SF/UHPC was fitted according to the simulation results. The results indicate that the developed mesoscopic model in this paper for simulating SF/UHPC can well characterize the static performance and damage mechanism of concrete under uniaxial compression stress, and the fitting formula can also predict the compressive strength of SF/UHPC. 国家重点基础研究发展计划(2015CB058002),天津市科技支撑计划项目(14ZCZDSF00016)

References

[1]  王德辉, 史才军, 吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐通报, 2016, 35(1):141-149. WANG D H, SHI C J, WU L M. Research and applications of ultra-high performance concrete (UHPC) in China[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(1):141-149(in Chinese).
[2]  RAHMAN S, MOLYNEAUX T, PATNAIKUNI I. Ultra-high performance concrete:Recent applications and research[J]. Australian Journal of Civil Engineering, 2005, 2(1):13-20.
[3]  JIA L J, HUI H B, YU Q H, et al. The application and development of ultra-high-performance concrete in bridge engineering[J]. Advanced Materials Research, 2013, 859(5):238-242.
[4]  陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3):1-24. CHEN B C, JI T, HUANG Q W, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3):1-24(in Chinese).
[5]  徐慎春, 吴成清, 刘中宪, 等. 钢纤维及纳米材料对超高性能混凝土早期力学性能的影响[J]. 硅酸盐通报, 2014, 33(3):542-546. XU S C, WU C Q, LIU Z X, et al. Effects of the nano materials and steel fibre on early-age properties of ultra-high per-formance concrete[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(3):542-546(in Chinese).
[6]  XU Z, HAO H, LI H N. Mesoscale modelling of fiber reinforced concrete material under compressive impact loading[J]. Construction & Building Materials, 2012, 26(1):274-288.
[7]  ABDELKARIM O, ELGAWADY M A. Concrete-filled-large deformable FRP tubular columns under axial compressive loading[J]. Fibers, 2015, 3:432-449.
[8]  XU M, WILLE K. Calibration of K&C concrete model for UHPC in LS-DYNA[J]. Advanced Materials Research, 2014, 1081:254-259.
[9]  FANG Q, ZHANG J. Three-dimensional modelling of steel fiber reinforced concrete material under intense dynamic loading[J]. Construction & Building Materials, 2013, 44(7):118-132.
[10]  杜修力, 金浏. 非均质混凝土材料破坏的三维细观数值模拟[J]. 工程力学, 2013, 30(2):82-88. DU X L, JIN L. Numerical simulation of three-dimensional meso-mechanical model for damage process of heterogeneous concrete[J]. Engineering Mechanics, 2013, 30(2):82-88(in Chinese).
[11]  金浏, 杜修力. 钢筋混凝土构件细观数值模拟分析[J]. 水利学报, 2012, 43(10):1230-1236. JIN L, DU X L. Meso-numerical simulation of reinforced concrete members[J]. Journal of Hydraulic Engineering, 2012, 43(10):1230-1236(in Chinese).
[12]  XU Z, HAO H, LI H N. Mesoscale modelling of dynamic tensile behaviour of fibre reinforced concrete with spiral fibres[J]. Materials & Design, 2012, 42(11):72-88.
[13]  中国工程建设协会. 纤维混凝土试验方法标准:CECS 13:2009[S]. 北京:中国计划出版社, 2010. China Construction Association. Standard test methods for fiber reinforced concrete:CECS 13:2009[S]. Beijing:China Planning Press, 2010(in Chinese).
[14]  OU Y C, TSAI M S, LIU K Y, et al. Compressive behavior of steel-fiber-reinforced concrete with a high reinforcing index[J]. Journal of Materials in Civil Engineering, 2012, 24(2):207-215.
[15]  王文谈, 魏耀富, 蒋晗, 等. 超高性能钢纤维增强混凝土力学性能的实验研究[J]. 应用数学和力学, 2014(S1):295-298. WANG W T, WEI Y F, JIANG H, et al. Mechanical properties of ultra-high performance steel fiber reinforced concrete:Experimental study[J]. Applied Mathematics and Mechanics, 2014(S1):295-298(in Chinese).
[16]  鞠彦忠, 王德弘, 李秋晨, 等. 钢纤维掺量对活性粉末混凝土力学性能的影响[J]. 实验力学, 2011, 26(3):254-260. JU Y Z, WANG D H, LI Q C, et al. On the influence of steel fiber volume fraction on mechanical properties of reactive powder concrete[J]. Journal of Experimental Mechanics, 2011, 26(3):254-260(in Chinese).
[17]  张楚汉, 唐欣薇, 周元德, 等. 混凝土细观力学研究进展综述[J]. 水力发电学报, 2015, 34(12):1-18. ZHANG C H, TANG X W, ZHOU Y D, et al. State-of-the-art literature review on concrete meso-scale mechanics[J]. Journal of Hydroelectric Engineering, 2015, 34(12):1-18(in Chinese).
[18]  GRASSL P, JIRáSEK M. Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension[J]. International Journal of Solids & Structures, 2009, 47(7-8):957-968.
[19]  XU Z, HAO H, LI H N. Mesoscale modelling of fibre reinforced concrete material under compressive impact loading[J]. Construction & Building Materials, 2012, 26(1):274-288.
[20]  ASTM. Standard test method for compressive strength of cylindrical concrete specimens:ASTM C39M-01[S]. Philadelphia:ASTM, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133