|
- 2018
纳米ZnO-氧化石墨烯及ZnO-氧化石墨烯/水性聚氨酯复合涂层的抗菌性能
|
Abstract:
循环冷却水系统滋生细菌会导致生物黏泥产生及设备腐蚀,为解决这一问题,由硅烷偶联剂γ-氨丙基三乙氧基硅烷(KH550)改性纳米ZnO,改性纳米ZnO与氧化石墨烯(GO)在二甲基乙酰胺中复合,获得纳米ZnO-GO复合抗菌材料,并利用纳米ZnO-GO改性水性聚氨酯(PU),得到纳米ZnO-GO/PU复合涂层。对纳米ZnO-GO复合抗菌材料进行表征分析及抗菌性能测试,对纳米ZnO-GO/PU复合涂层进行抗菌性能测试及物理性能分析。结果表明,纳米ZnO成功负载在GO表面,纳米ZnO-GO纯度较高,当GO质量分数为35wt%、纳米ZnO-GO使用量为160 mgL-1时,其抗菌率可达97.16%;当纳米ZnO-GO质量分数为2.33wt%时,纳米ZnO-GO/PU复合涂层抗菌率可达90.29%,同时拥有4 H的铅笔硬度及93.26%的缓蚀性能。 Microorganism growth can result in biofouling formation and equipment corrosion. In order to solve the biofouling and corrosion problems in recirculating cooling water system, nano ZnO was modified by the silence coupling agent γ-aminopropyltriethoxysilane(KH550). The modified nano ZnO and graphene oxide(GO) were compounded in the dimethylacetamide, and the nano ZnO-GO antibacterial composites were obtained. The waterborne polyurethane(PU) was modified by nano ZnO-GO to get nano ZnO-GO/PU coating composites. The characterizations and antibacterial properties of nano ZnO-GO and the antibacterial properties and physical properties of nano ZnO-GO/PU coating composites were tested and analyzed. The results show that nano ZnO is successfully supported on the surface of GO, and the purity of nano ZnO-GO is high. When the mass fraction of GO is 35wt% and the dosage of nano ZnO-GO is 160 mgL-1, the antibacterial rate of nano ZnO-GO is 97.16%. When the mass fraction of nano ZnO-GO is 2.33wt% in the coating, the antibacterial rate of nano ZnO-GO/PU composite coating is up to 90.29% and it has 4 H pencil hardness and 93.26% corrosion inhibition performance. 中国石油大学(华东)研究生创新工程(YCX2017047)
[1] | SAWAI J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay[J]. Journal of Microbiological Methods, 2003, 54(2):177-182. |
[2] | MANGADLAO J D, SANTOS C M, FELIPE M J, et al. On the antibacterial mechanism of graphene oxide(GO) Langmuir-Blodgett films[J]. Chemical Communications, 2015, 51(14):2886-2889. |
[3] | GURUNATHAN S, HAN J W, DAYEM A A, et al. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa[J]. International Journal of Nanomedicine, 2012, 7:5901-5914. |
[4] | 马晶, 褚佳, 祖雪薇, 等. 氧化锌/石墨烯复合材料的水热制备及其光催化性能[J]. 中国科技论文, 2015, 10(18):2130-2135. MA J, CHU J, ZU X W, et al. Hydrothermal synthesis and photocatalytic performance of ZnO/graphene[J]. China Sciencepaper, 2015, 10(18):2130-2135 (in Chinese). |
[5] | SOME S, HO S M, DUA P, et al. Dual functions of highly potent graphene derivative-poly-L-lysine composites to inhibit bacteria and support human cells[J]. ACS Nano, 2012, 6(8):7151-7161. |
[6] | PADMAVATHY N, VIJAYARAGHAVAN R. Enhanced bioactivity of ZnO nanoparticles-An antimicrobial study[J]. Science and Technology of Advanced Materials, 2008, 9(3):035004. |
[7] | AKHAVAN O, GHADERI E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS nano, 2010, 4(10):5731-5736. |
[8] | TU Y, LV M, XIU P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets[J]. Nature Nanotechnology, 2013, 8(8):594-601. |
[9] | KRISHNAMOORTHY K, VEERAPANDIAN M, ZHANG L H, et al. Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation[J]. Journal of Physical Chemistry C, 2012, 116(32):17280-17287. |
[10] | DAS M R, SARMA R K, BORAH S C, et al. The synthesis of citrate-modified silver nanoparticles in an aqueous sus-pension of graphene oxide nanosheets and their antibacterial activity[J]. Colloids & Surfaces B:Biointerfaces, 2013, 105:128-136. |
[11] | AKHAVAN O, GHADERI E. Escherichia coli, bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner[J]. Carbon, 2012, 50(5):1853-1860. |
[12] | LIU S, HU M, ZENG T H, et al. Lateral dimension-dependent antibacterial activity of graphene oxide sheets[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2012, 28(33):12364-12372. |
[13] | ZHANG L, DING Y, POVEY M, et al. ZnO nanofluids:A potential antibacterial agent[J]. Progress in Natural Science:Materials International, 2008, 18(8):939-944. |
[14] | RAGHUPATHI K R, KOODALI R T, MANNA A C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2011, 27(7):4020-4028. |
[15] | BENNISON J J, NOTTINGHAM R M, KEY E L, et al. The effect of zinc oxide and elemental zinc boluses on the concentrations of Zn in serum and faeces, and on providing protection from natural Pithomyceschartarum challenge in sheep[J]. New Zealand Veterinary Journal, 2010, 58(4):196-200. |
[16] | ALENTEJANO C R, AOKI I V. Localized corrosion inhibition of 304 stainless steel in pure water by oxyanions tungstate and molybdate[J]. Electrochimica Acta, 2004, 49(17):2779-2785. |
[17] | BRUNNER T J, WICK P, MANSER P, et al. In vitro cytotoxicity of oxide nanoparticles:Comparison to asbestos, silica, and the effect of particle solubility[J]. Environmental Science & Technology, 2006, 40(14):4374-4381. |
[18] | HU W, PENG C, LUO W, et al. Graphene-based antibac-terial paper[J]. ACS nano, 2010, 4(7):4317-4323. |
[19] | 马涛, 刘芳, 赵朝成, 等. 循环水系统黏泥细菌群落结构多样性的PCR-DGGE分析[J]. 石油学报(石油加工), 2011, 27(3):493-500. MA T, LIU F, ZHAO C C, et al. Analysis of bacterial community diversity of biofouling in recirculating cooling water system by using PCR-DGGE[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2011, 27(3):493-500 (in Chinese). |
[20] | VESELY D, KALENDOVA A, KALENDA P. A study of diatomite and calcined kaoline properties in anticorrosion protective coatings[J]. Progress in Organic Coatings, 2010, 68(3):173-179. |
[21] | 国家技术监督局. 涂膜硬度铅笔测定法:GB/T 6739-1996[S]. 北京:中国标准出版社, 1997. State Bureau of Technology Supervision. Determination of film hardness by pencil test:GB/T 6739-1996[S]. Beijing:China Standards Press, 1997 (in Chinese). |
[22] | RYBALKA K V, BEKETAEVA L A, DAVYDOV A D. Estimation of corrosion current by the analysis of polarization curves:Electrochemical kinetics mode[J]. Russian Journal of Electrochemistry, 2014, 50(2):108-113. |
[23] | CARPIO I E M, SANTOS C M, WEI X, et al. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells[J]. Nanoscale, 2012, 4(15):4746-4756. |
[24] | 郭少波, 马剑琪, 兰阿峰, 等. 核-壳纳米Ag@ZrO2复合材料的制备及其抑菌性能[J]. 复合材料学报, 2016, 33(4):821-826. GUO S B, MA J Q, LAN A F, et al. Preparation and its antibacterial properties of core-shell nano Ag@ZrO2 composite[J]. Acta Materiae Compositae Sinica, 2016, 33(4):821-826 (in Chinese). |
[25] | ZHONG L, YUN K. Graphene oxide-modified ZnO particles:Synthesis, characterization, and antibacterial properties[J]. International Journal of Nanomedicine, 2015, 10:79-92. |
[26] | ZHANG C, CHEN M, XU X, et al. Graphene oxide reduced and modified by, environmentally friendly glycylglycine and, its excellent catalytic performance[J]. Nanotechnology, 2014, 25(13):135707. |
[27] | LV X J, FU W F, CHANG H X, et al. Hydrogen evolution from water using semiconductor nanoparticle/graphene composite photocatalysts without noble metals[J]. Journal of Materials Chemistry, 2011, 22(4):1539-1546. |