|
- 2018
碳纳米管对激光选区熔化成形Al基复合材料的影响
|
Abstract:
基于激光选区熔化(SLM)方式,通过改变扫描速度,制备不同碳纳米管(CNTs,质量分数分别为0、0.5wt%、1.0wt%、1.5wt%、2.0wt%)含量的CNTs/Al复合材料试件,探究不同CNTs含量与激光扫描速度对试件性能的影响。结果表明,CNTs含量小于1.0wt%时,分散效果较好,大部分CNTs以单根状态黏附于Al粉表面;含量大于1.0wt%时,CNTs团聚尺寸增大、数量增多。相同SLM成形工艺下,低CNTs含量的CNTs/Al复合材料试件内部孔隙较少,致密度较高;高CNTs含量的CNTs/Al复合材料试件内部孔隙逐渐增多,致密度降低。激光扫描速度为1 300 mm/s工艺下,随着CNTs质量分数的增加,CNTs/Al复合材料试件硬度呈先上升后下降趋势,在CNTs含量为1.0wt%显微硬度达到最高。CNTs/Al复合材料试件平均晶粒尺寸相对于铝合金试件更加细化,在CNTs含量大于1.0wt%时,尽管晶粒依然细化,但试件致密度降低造成显微硬度下降明显。 Based on selective laser melting (SLM) method, Al matrix composites reinforced with various mass fraction of carbon nanotubes(CNTs, mass fractions were 0, 0.5wt%, 1.0wt%, 1.5wt%, 2.0wt%, respectively) were produced by changing scanning speed. The effect of CNTs content and laser scan speed on performance of Al matrix composites was investigated. The results show that the dispersion is better and most of CNTs adhere to the surface of Al powder in a single state when the CNTs content(mass fraction)is not more than 1.0wt%, while the number and size of CNTs agglomerations are enhanced when the CNTs content exceeds 1.0wt%. Under the same SLM process condition, the number of pores in CNTs/Al composite specimens at low CNTs content is less so that relative densities are high. At high CNTs content, porosity of CNTs/Al composite specimen increases and relative densities of specimens reduce. With the CNTs content rising, hardness of CNTs/Al composite specimen increases firstly and then decreases at scanning speed of 1 300 mm/s. The micro-hardness of CNTs/Al composite specimen at the CNTs content of 1.0wt% reaches the peak. Compared with aluminum alloy specimen, CNTs/Al composite specimen shows finer grain size. The hardness of CNTs/Al composite specimen that the CNTs content is exceeding 1.0wt% decreases due to lower relative density, though grain size demonstrates the fine tendency. 国防基础科研项目(JCKY2016606C010)
[1] | LIU Z Y, XIAO B L, WANG W G, et al. Modelling of carbon nanotube dispersion and strengthening mechanisms in Al matrix composites prepared by high energy ball milling-powder metallurgy method[J]. Composites Part A:Applied Science & Manufacturing, 2017, 94:189-198. |
[2] | 涂文斌, 柯黎明, 徐卫平. 搅拌摩擦加工制备MWCNTs/Al复合材料显微结构及硬度[J]. 复合材料学报, 2011, 28(6):142-147. TU W B, KE L M, XU W P. Microstructure and hardness of MWCNTs/Al composite by friction stir processing[J]. Acta Materiae Compositae Sinica, 2011, 28(6):142-147(in Chinese). |
[3] | 邓春锋, 马艳霞, 薛旭斌, 等. 碳纳米管增强2024铝基复合材料的力学性能及断裂特性[J]. 材料科学与工艺, 2010, 18(2):229-232. DENG C F, MA Y X, XUE X B, et al. Mechanical properties and fracture characterization of 2024Al composite reinforced with carbon nanotube[J]. Materials Science and Technology, 2010, 18(2):229-232(in Chinese). |
[4] | HAN Q, SETCHI R, LACAN F, et al. Selective laser melting of advanced Al-Al2O3 nanocomposites:Simulation, microstructure and mechanical properties[J]. Materials Science & Engineering A, 2017, 698:162-173. |
[5] | 张凯, 刘婷婷, 廖文和, 等. 氧化铝陶瓷激光选区熔化成形实验[J]. 中国激光, 2016, 43(10):120-126. ZHANG K, LIU T T, LIAO W H, et al. Experiment on selective laser melting forming of Al2O3 ceramics[J]. Chinese Journal of Lasers, 2016, 43(10):120-126(in Chinese). |
[6] | GU D, CHANG F, DAI D. Selective laser melting additive manufacturing of novel aluminum based composites with multiple reinforcing phases[J]. Journal of Manufacturing Science & Engineering, 2015, 137(2):021010. |
[7] | WANG J, FRUCHTL D, SUN Z, et al. Control of optical limiting of carbon nanotube dispersions by changing solvent parameters[J]. Journal of Physical Chemistry C, 2010, 114(13):6148-6156. |
[8] | LI Y, GU D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Materials & Design, 2014, 63(2):856-867. |
[9] | HUANG Y, OUYANG Q, ZHANG D, et al. Carbon materials reinforced aluminum composites:A review[J]. Acta Metallurgica Sinica, 2014, 27(5):775-786. |
[10] | READ N, WANG W, ESSA K, et al. Selective laser melting of AlSi10Mg alloy:Process optimisation and mechanical properties development[J]. Materials &Design, 2015, 65:417-424. |
[11] | 程灵钰, 张升, 魏青松, 等. 激光选区熔化成形不锈钢与纳米羟基磷灰石复合材料的组织及力学性能[J]. 中国有色金属学报, 2014, 24(6):1510-1517. CHENG L Y, ZHANG S, WEI Q S, et al. Microstructure and mechanical properties of stainless steel and nano hydroxyapatite composites fabricated by selective laser melting[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(6):1510-1517(in Chinese). |
[12] | 李爱坤, 谢明, 王松, 等. 碳纳米管含量对MWCNTs/Ag复合材料组织和力学性能的影响[J]. 中国有色金属学报, 2016, 26(10):2102-2109. LI A K, XIE M, WANG S, et al. Effect of MWCNTs content on microstructure and mechanical properties of MWCNTs/Ag composites[J]. The Chinese Journal of Non-ferrous Metals, 2016, 26(10):2102-2109(in Chinese). |
[13] | JAVIDANI M, ARREGUIN Z J, DANOVITCH J, et al. Additive manufacturing of AlSi10Mg alloy using direct energy deposition:Microstructure and hardness characterization[J]. Journal of Thermal Spray Technology, 2017, 26(4):587-597. |
[14] | GU D, WANG H, DAI D, et al. Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting[J]. Scripta Materialia, 2015, 96:25-28. |
[15] | 童慧, 胡正飞, 祁昌亚, 等. Ca含量对SiC/Al泡沫复合材料性能和结构的影响[J]. 复合材料学报, 2016, 33(11):2576-2583. TONG H, HU Z F, QI C Y, et al. Effect of Ca content on property and microstructure of SiC/Al foam composites[J]. Acta Materiae Compositae Sinica, 2016, 33(11):2576-2583(in Chinese). |
[16] | 易健宏, 杨平, 沈韬. 碳纳米管增强金属基复合材料电学性能研究进展[J]. 复合材料学报, 2016, 33(4):689-703. YI J H, YANG P, SHEN T. Research progress of electrical properties for carbon nanotubes reinforced metal matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(4):689-703(in Chinese). |
[17] | ZHAO X, SONG B, FAN W R, et al. Selective laser melting of carbon/AlSi10Mg composites:Microstructure, mechanical and electronical properties[J]. Journal of Alloys & Compounds, 2016, 665:271-281. |
[18] | HAN C J, WANG Q, SONG B, et al. Microstructure and property evolutions of titanium/nano-hydroxyapatite composites in-situ prepared by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71:85-94. |
[19] | DU Z, TAN M J, GUO J F, et al. Aluminum-carbon nanotubes composites produced from friction stir processing and selective laser melting[J]. Material Wissenschaft und Werk-stofftechnik, 2016, 47(5-6):539-548. |
[20] | ESAWI A M K, MORSI K, SAYED A, et al. The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites[J]. Composites Part A:Applied Science & Manufacturing, 2011, 42(3):234-243. |