|
- 2018
纳米纤维素增强SiO2气凝胶力学性能与微观结构
|
Abstract:
为克服SiO2气凝胶强度低、易破碎等缺点,通过原位溶胶-凝胶法制备纳米纤维素(CNF)增强SiO2气凝胶,并对SiO2气凝胶的化学结构、微观形貌和力学、物理性能进行表征分析,探讨了CNF对SiO2气凝胶力学性能的增强机制。结果表明:CNF独特的纳米级网络结构可增强SiO2颗粒之间的联结强度;Si—OH(960 cm-1)和Si—O—Si(1 225 cm-1、1 056 cm-1和800 cm-1)等特征吸收峰的出现表明,CNF与SiO2之间形成稳定的化学键联结;采用不同含量CNF气凝胶作为SiO2增强相均可达到增强力学性能的效果,同时仍能保持SiO2气凝胶本身质轻、高孔隙率、高比表面积等特性;当以CNF质量分数为6wt%的溶液制备气凝胶时,CNF增强SiO2气凝胶具有最优的力学性能,压缩模量和压缩强度分别为12.43 MPa和2.59 MPa。 In order to eliminate the low mechanical property and brittle character of SiO2 aerogel, the cellulose nanofibrils (CNF) were used to reinforce SiO2 aerogel through in-situ sol-gel process.The chemical structure, morphology, mechanical and physical properties of SiO2 aerogels were characterized and analyzed.The improvement of mechanical properties and mechanism of SiO2 aerogel reinforced with CNF were investigated. The results show that the CNF of unique nano network structure can enhance the bonding strength between SiO2 particles. The appearance of Si-OH (960 cm-1) and Si-O-Si (1 225 cm-1, 1 056 cm-1 and 800 cm-1) characteristic absorption peaks represent the formation of stable chemical bond between cellulose and SiO2. The all CNF of different content can significantly improve the mechanical properties of SiO2 aerogel, and still remain SiO2 aerogel itself light mass, high porosity and high specific area. When the CNF mass fraction is 6wt%, the SiO2 aerogel reinforced with CNF has the best mechanical properties; its compressive modulus and strength are 12.43 MPa and 2.59 MPa, respectively. 林业公益化行业科研专项(201504603);中国农科院农业科技创新工程项目“生物质转化利用装备创新团队”通信作者:王思群,教授,研究方向为木质复合材料、生物质纳米材料、功能化纳米材料E-mail:swang@utk.edu.何春霞,教授,研究方向为生物质增强高分子复合材料E-mail:chunxiahe@tom.com
[1] | SAI H, XING L, XIANG J, et al. Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non-supercritical drying process[J]. Journal of Materials Chemistry A, 2013, 1(27):7963-7970. |
[2] | HVSING N, SCHUBERT U, MEZEI R, et al. Formation and structure of gel networks from Si(OEt)4/(MeO)Si(CH2)3 NR'2 mixtures (NR'2=NH2 or NHCH2CH2 NH2)[J]. Chemistry of Materials, 1999, 11(2):451-457. |
[3] | GIBSON L J, ASHBY M F. Cellular solids:Structure and properties[M]. Cambridge:Cambridge University Press, 1997. |
[4] | 中国国家标准化管理委员会. 硬质泡沫塑料压缩性能的测定:GB/T 8813-2008[S]. 北京:中国标准出版社, 2008. Standardization Administration of the People's Republic of China. Rigid cellular plastics:Determination of compression properties:GB/T 8813-2008[S]. Beijing:China Standards Press, 2008(in Chinese). |
[5] | DOURBASH A, MOTAHARI S, OMRANPOUR H. Effect of water content on properties of one-step catalyzed silica aerogels via ambient pressure drying[J]. Journal of Non-Crystalline Solids, 2014, 405(8):135-140. |
[6] | ASHORI A, SHEYKHNAZARI S, TABARSA T, et al. Bacterial cellulose/silica nanocomposites:Preparation and characterization[J]. Carbohydrate Polymers, 2012, 90(1):413-418. |
[7] | LU T, JIANG M, JIANG Z, et al. Effect of surface modi-fication of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites[J]. Composites Part B:Engineering, 2013, 51:28-34. |
[8] | HWANG S, KIM T, HYUN S. Effect of surface modification conditions on the synthesis of mesoporous crack-free silica aerogel monoliths from waterglass via ambient-drying[J]. Microporous and Mesoporous Materials, 2010, 130(1-3):295-302. |
[9] | HE P, GAO X, LI X, et al. Highly transparent silica aerogel thick films with hierarchical porosity from water glass via ambient pressure drying[J]. Materials Chemistry and Physics, 2014, 147(1-2):65-74. |
[10] | CARRAHER C E. General topics:Silica aerogels-properties and uses[J]. Polymer News, 2005, 30(12):386-388. |
[11] | CHEN Y, FENG Z, HUANG X, et al. Progress in nano-sized silica gel-thermal insulation material[J]. Inorganic Chemicals Industry, 2010, 42(11):4-6. |
[12] | GAO Q, ZHANG C, FENG J, et al. Progress of silica aerogel insulation composites[J]. Journal of Materials Science & Engineering, 2009, 27(2):302-306. |
[13] | MEADOR M A B, CAPADONA L A, MCCORKLE L, et al. Structure-property relationships in porous 3D nanostructures as a function of preparation conditions:Isocyanate cross-linked silica aerogels[J]. Chemistry of Materials, 2007, 19(9):2247-2260. |
[14] | MA H, ROBERTS A P, PRéVOST J, et al. Mechanical structure-property relationship of aerogels[J]. Journal of Non-Crystalline Solids, 2000, 277(2-3):127-141. |
[15] | PATEL R P, PUROHIT N S, SUTHAR A M. An overview of silica aerogels[J]. International Journal of Chemtech Research, 2009, 1(4):1052-1057. |
[16] | KIM C, LEE J, KIM B. Synthesis and pore analysis of aerogel-glass fiber composites by ambient drying method[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2008, 313-314:179-182. |
[17] | 孙燕涛, 石多奇, 杨晓光, 等. 纤维增强SiO2气凝胶复合材料压缩性能和变形机制[J]. 复合材料学报, 2013, 30(4):225-230. SUN Y T, SHI D Q, YANG X G, et al. Compression and deformation mechanisms of a fiber-reinforced SiO2 aerogel composites[J]. Acta Materiae Compositae Sinica, 2013, 30(4):225-230(in Chinese). |
[18] | 郭玉超, 马寅魏, 石多奇, 等. 莫来石纤维增强SiO2气凝胶复合材料的力学性能试验[J]. 复合材料学报, 2016, 33(6):1297-1304. GUO Y C, MA Y W, SHI D Q, et al. Mechanical property tests of mullite fiber-reinforced SiO2 aerogel composites[J]. Acta Materiae Compositae Sinica, 2016, 33(6):1297-1304(in Chinese). |
[19] | MEADOR M A B, VIVOD S L, MCCORKLE L, et al. Reinforcing polymer cross-linked aerogels with carbon nano-fibers[J]. Journal of Materials Chemistry, 2008, 18(16):1843-1852. |
[20] | DEMILECAMPS A, REICHENAUER G, RIGACCI A, et al. Cellulose-silica composite aerogels from "one-pot" synthesis[J]. Cellulose, 2014, 21(4):2625-2636. |
[21] | LIU S, YU T, HU N, et al. High strength cellulose aerogels prepared by spatially confined synthesis of silica in bioscaffolds[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 439(2):159-166. |
[22] | BRINKER C J, SCHERER G W. Sol-gel science:The physics and chemistry of sol-gel processing[M]. New York:Academic Press, 1990. |
[23] | FRICKE J. Aerogels-highly tenuous solids with fascinating properties[J]. Journal of Non-Crystalline Solids, 1988, 100(1-3):169-173. |
[24] | FRICKE J, EMMERLING A. Aerogels[J]. Journal of the American Ceramic Society, 1992, 75(8):2027-2036. |
[25] | KIM G S, HYUN S H, PARK H H. Synthesis of low-dielectric silica aerogel films by ambient drying[J]. Journal of the American Ceramic Society, 2001, 84(2):453-455. |
[26] | LEVENTIS N. Three-dimensional core-shell superstructures:Mechanically strong aerogels[J]. Accounts of Chemical Research, 2007, 40(9):874-884. |
[27] | DEMILECAMPS A, BEAUGER C, HILDENBRAND C, et al. Cellulose-silica aerogels[J]. Carbohydrate Polymers, 2015, 122:293-300. |
[28] | OMRANPOUR H, DOURBASH A, MOTAHARI S. Mechanical properties improvement of silica aerogel through aging:Role of solvent type, time and temperature[J]. AIP Conference Proceedings, 2014, 1593(1):298-302. |