|
- 2018
γ射线辐照对高模量碳纤维及碳纤维/氰酸酯复合材料性能的影响
|
Abstract:
通过模拟空间γ射线辐照环境,采用60Co-γ射线对高模量碳纤维及其增强的改性氰酸酯复合材料进行辐照,采用SEM和XRD对辐照前后的碳纤维及碳纤维/氰酸酯复合材料进行了分析和表征,研究了复合材料的质量损失率、拉伸性能及层间剪切强度随γ射线辐照剂量的变化规律。结果表明,γ射线辐照能增加碳纤维表面粗糙度;质量损失率随γ射线辐照剂量增大先增加后趋于平缓,但均小于1%;碳纤维/氰酸酯复合材料拉伸性能与层间剪切强度均随γ射线辐照剂量增大先提高后降低,在吸收剂量为5×105 rad时出现最大值,拉伸强度为1 803 MPa,拉伸模量为243 GPa,层间剪切强度为72 MPa。 By simulating geosynchronous orbit space γ ray irradiation environment, the high modulus carbon fiber and carbon fiber/cyanate ester composites were irradiated by 60Co-γ ray. The carbon fiber and carbon fiber/cyanate ester composites were analyzed and characterized by SEM and XRD before and after irradiation. The effects of irradiation on the mass loss rate, tensile strength and interlaminar shear strength were studied. The results show that the mass loss rates increase with the increase of γ ray dose and then tend to be gentle, but less than 1%; the tensile strength and interlaminar shear strength of carbon fiber/cyanate ester composites both increase firstly and then decrease with increasing dose, the maximum values occur at 5×105 rad with tensile strength of 1 803 MPa, tensile modulus of 243 GPa and interlaminar shear strength of 72 MPa.
[1] | 柴朋军, 王嵘, 徐晋伟, 等. 空间环境复合材料的性能研究与表征[J]. 复合材料学报, 2016, 33(7):1468-1474. CHAI P J, WANG R, XU J W, et al. Property research and evaluation on composites for space environment[J]. Acta Materiae Compositae Sinica, 2016, 33(7):1468-1474(in Chinese). |
[2] | KIM J H. Low earth orbit space environment simulation and its effects on graphite/epoxy composites[J]. Composite Structures, 2006, 72(2):218-226. |
[3] | 陶积柏, 黎昱, 张玉生, 等. 高模量碳纤维在中国宇航结构产品上的应用现状及实现自我保障的建议[J]. 材料科学与工艺, 2015, 23(6):98-103. TAO J B, LI Y, ZHANG Y S, et al. Application-status of high modulus carbon fiber in domestic aerospace structural products and suggestion for self-supply[J]. Materials Science & Technology, 2015, 23(6):98-103(in Chinese). |
[4] | 刘娇文, 高战蛟, 周欣欣, 等. 冷热循环对M40碳纤维/氰酸酯复合材料影响的试验研究[J]. 航天器环境工程, 2014, 31(6):631-634. LIU J W, GAO Z J, ZHOU X X, et a1. Test of thermal cycling on properties of M40 carbon fiber/cyanate ester composites[J]. Spacecraft Environment Engineering, 2014, 31(6):631-634(in Chinese). |
[5] | 张明. 真空电子辐照对碳纤维/氰酸酯复合材料的影响[J]. 宇航材料工艺, 2010(6):62-64. ZHANG M. Effect of vacuum electron irradiation on properties of carbon fiber/cyanate ester composites[J]. Aerospace Materials & Technology, 2010(6):62-64(in Chinese). |
[6] | 中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料拉伸性能试验方法:GB/T 3354-2014[S]. 北京:中国标准出版社, 2015. Standardization Administration of the People's Republic of China. Test method for tensile properties of orientation fiber reinforced polymer matrix composite materials:GB/T 3354-2014[S]. Beijing:China Standards Press, 2015(in Chinese). |
[7] | 全国纤维增强塑料标准化技术委员会. 单向纤维增强塑料层间剪切强度试验方法:GB 3357-1982[S]. 北京:中国标准出版社, 1982. National Technical Committee of Standardization for Fiber Reinfoeced Plastics. Test method for interlaminar shear strength of unidirectional fiber reinforced plastics:GB 3357-1982[S]. Beijing:China Standards Press, 1982(in Chinese). |
[8] | 石继梅, 王源升, 葛宝, 等. γ射线辐照对碳纤维表面接枝改性的影响[J]. 复合材料学报, 2012, 29(1):43-48. SHI J M, WANG Y S, GE B, et a1. Effects of γ-ray irradiation on carbon fiber surface graft modification[J]. Acta Materiae Compositae Sinica, 2012, 29(1):43-48(in Chinese). |
[9] | 易楠, 顾轶卓, 李敏, 等. 碳纤维复合材料界面结构的形貌与尺寸的表征[J]. 复合材料学报, 2010, 27(5):36-40. YI N, GU Y Z, LI M, et al. Characterization on topography and dimension of the interphase structure in carbon fiber composites[J]. Acta Materiae Compositae Sinica, 2010, 27(5):36-40(in Chinese). |
[10] | 高禹, 徐晋伟, 王伯臣, 等. 空间环境与碳/环氧复合材料交互作用的研究现状[J]. 航空制造技术, 2012(15):66-69+82. GAO Y, XU J W, WANG B C, et al. Research status on interaction between space environment and carbon/epoxy composites[J]. Aeronautical Manufacturing Technology, 2012(15):66-69+82(in Chinese). |
[11] | 田军, 王齐祖, 杨生荣, 等. 60Coγ射线辐照对碳纤维表面及其复合材料层间剪切强度的影响[J]. 复合材料学报, 1998, 15(4):1-5. TIAN J, WANG Q Z, YANG S Y, et al. Effect of carbon fiber surface and interlaminar shear strength of carbon fiber/epoxy composite by 60Co-γ ray irradiation treatment[J]. Acta Materiae Compositae Sinica, 1998, 15(4):1-5(in Chinese). |
[12] | 沈曾民, 迟伟东, 张学军, 等. 高模量碳纤维的现状及发展(1)[J]. 高科技纤维与应用, 2010, 35(3):5-13. SHEN Z M, CHI W D, ZHANG X J, et al. The current status and development trend of high modulus carbon fibers (1)[J]. Hi-Tech Fiber & Application, 2010, 35(3):5-13(in Chinese). |
[13] | 章令晖, 周宏志, 李明珠, 等. 航天复合材料技术述评[J]. 高科技纤维与应用, 2015, 40(3):22-28. ZHANG L H, ZHOU H Z, LI M Z, et al. Review of aerospace composite technology[J]. Hi-Tech Fiber & Application, 2015, 40(3):22-28(in Chinese). |
[14] | 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese). |
[15] | 任鹏刚, 梁国正. 高模量碳纤维增强改性氰酸酯树脂基复合材料研究[J]. 宇航材料工艺, 2008, 38(1):35-39. REN P G, LIANG G Z. High modulus carbon fiber modified cyanate ester composites[J]. Aerospace Materials & Technology, 2008, 38(1):35-39(in Chinese). |
[16] | FANG T, SHIMP D A. Polycyanate ester:Science and applications[J]. Progress in Polymer Science, 1995, 20(1):61-118. |
[17] | HAMERTON I, HAY J N. Recent developments in the chemistry of cyanate ester[J]. Polymer Intenational, 1998, 47(4):465-473. |
[18] | TANG J, STEPHEN K. Recent progress of applications of advanced composite materials in aerospace industry[J]. Spacecraft Environment Engineering, 2010, 27(5):552-557. |
[19] | KELLER P, LAKE M, CODELL D, et al. Development of elastic memory composite stiffeners for a flexible precision reflector[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport:American Institute of Aeronautics and Astronautics, Inc., 2006:1-11. |
[20] | 刘小冲, 成来飞, 张立同, 等. C/SiC复合材料在空间环境中的性能研究进展[J]. 材料导报, 2013, 27(9):127-130. LIU X C, CHENG L F, ZHANG L T, et al. Research progresses on properties of the C/SiC composites under the space environment[J]. Materials Review, 2013, 27(9):127-130(in Chinese). |
[21] | GROSSMAN E, GOUZMAN I. Space environment effects on polymers in low earth orbit[J]. Nuclear Instruments and Methods in Physics Research, 2003, 208(9):48-57. |
[22] | 高禹, 董尚利, 包建文, 等. 空间环境与碳/环氧复合材料交互作用的研究现状[J]. 航空制造技术, 2012, 411(15):66-69. GAO Y, DONG S L, BAO J W, et al. Research status on interaction between space environment and carbon/epoxy composites[J]. Aeronautical Manufacturing Technology, 2012, 411(15):66-69(in Chinese). |
[23] | 陈维强, 张玉生, 黎昱, 等. 国产高模量碳纤维抗真空紫外辐照性能试验研究[J]. 航天器环境工程, 2013, 30(4):397-400. CHEN W Q, ZHANG Y S, LI Y, et a1. The anti-VUV irradiation performance of domestic-made high-modulus carbon fiber[J]. Spacecraft Environment Engineering, 2013, 30(4):397-400(in Chinese). |
[24] | 赵臻璐, 陈维强, 张玉生, 等. BHM3碳纤维及其氰酸酯基复合材料耐原子氧侵蚀性能[J]. 宇航学报, 2016, 37(5):625-630. ZHAO Z L, CHEN W Q, ZHANG Y S, et al. Atomic oxygen erosion of BHM3 carbon fiber and carbon fiber/cyanate ester composites[J]. Journal of Astronautics, 2016, 37(5):625-630(in Chinese). |
[25] | 王强, 毛云忠, 许江菱, 等. 空间级加成型双组份导热硅橡胶的研制[J]. 有机硅材料, 2015, 29(5):377-380. WANG Q, MAO Y Z, XU J L, et al. Preparation of two-component space-grade addition cure thermal conductive silicone rubber[J]. Silicone Material, 2015, 29(5):377-380(in Chinese). |
[26] | LUO S, VAN O W J. Surface modification of textile fibers for improvement of adhesion to polymeric matrices:A review[J]. Journal of Adhesion Science & Technology, 2002, 16(13):1715-1735. |