|
- 2017
野燕麦主芒纤维细胞吸湿变形的力学分析
|
Abstract:
[1] | STINSON R H, PETERSON R L. On sowing wild oat[J]. Canadian Journal of Botany, 1979, 57(11):1292-1295. |
[2] | RAJU, M V S, BARTON, R J. On dislodging caryopses of wild oats[J]. Journal of Plant Research, 1984, 97(1):127-130. |
[3] | 李哲. 野燕麦吸湿芒吸湿运动的力学机制研究[D]. 郑州:郑州大学, 2016. LI Z. Mechanical mechanism research on the hygroscopic movement of wild oat awn[D]. Zhengzhou:Zhengzhou University, 2016(in Chinese). |
[4] | JOFFRE T, NEAGU R C, BARDAGE S L, et al. Modelling of the hygroelastic behaviour of normal and compression wood tracheids[J]. Journal of Structural Biology, 2014, 185(1):89-98. |
[5] | BAKAIYAN H, HOSSEINI H, AMERI E. Analysis of multi-layered filament-wound composite pipes under combined internal pressure and thermomechanical loading with thermal variations[J]. Composite Structures, 2009, 88(4):532-541. |
[6] | BéAKOU A, NTENGA R. Structure, morphology and mechanical properties of rhectophyllum camerunense (RC) plant fiber:Part II-Computational homogenization of the anisotropic elastic properties[J]. Computational Materials Science, 2011, 50(4):1550-1558. |
[7] | ELBAUM R, ZALTZMAN L, BURGERT I, et al. The role of wheat awns in the seed dispersal unit[J]. Science, 2007, 316(5826):884-886. |
[8] | ZABLER S, PARIS O, BURGERT I, et al. Moisture changes in the plant cell wall force cellulose crystallites to deform[J]. Journal of Structural Biology, 2010, 171(2):133-141. |
[9] | BURGERT I, EDER M, GIERLINGER N, et al. Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell[J]. Planta, 2007, 226(4):981-987. |
[10] | ZICKLER G A, RUFFONI D, DUNLOP J W C, et al. Finite element modeling of the cyclic wetting mechanism in the active part of wheat awns[J]. Biointerphases, 2012, 7(1):42-51. |
[11] | CAVE I D. Modelling moisture-related mechanical properties of wood Part I:Properties of the wood constituents[J]. Wood Science & Technology, 1978, 12(1):75-86. |
[12] | HAI Q, MISHNAEVSKY L. Moisture-related mechanical properties of softwood:3D micromechanical modeling[J]. Computational Materials Science, 2009, 46(2):310-320. |
[13] | ELBAUM R, GORB S, FRATZL P. Structures in the cell wall that enable hygroscopic movement of wheat awns[J]. Journal of Structural Biology, 2008, 164(1):101-107. |
[14] | NEAGU R C, GAMSTEDT E K. Modelling of effects of ultrastructural morphology on the hygroelastic properties of wood fibres[J]. Journal of Materials Science, 2007, 42:10254-10274. |
[15] | ALTANER C M, JARVIS M C. Modelling polymer interactions of the ‘molecular Velcro’ type in wood under mechanical stress[J]. Journal of Theoretical Biology, 2008, 253(3):434-445. |