|
- 2018
CFRP圆形胞元蜂窝芯层面外剪切模量
|
Abstract:
为了减少卫星的热变形,将碳纤维增强树脂基复合材料(CFRP)材料圆管周期排布获得新型圆形胞元蜂窝芯层。考虑无论是Ressiner理论还是商业有限元软件ABAQUS,层合板计算热变形时,芯层的面外剪切模量均很重要,因此对CFRP圆形胞元蜂窝芯层的面外剪切进行了研究。分别从应力与应变的角度基于能量等效原理求出圆形胞元蜂窝芯层的面外剪切模量公式。以T300/环氧材料的工程常见铺层为例,比较基于ABAQUS软件计算所得剪切模量仿真解与公式计算所得理论解,其最大误差仅为10.4%,证实公式对于CFRP材料的适用性。同时用(±45°)2铺层的T300/环氧芯层完成双剪试验,试验结果与理论结果误差为24.1%,与前人研究的铝蜂窝面外剪切模量理论解与试验解的误差相近。最后通过仿真手段证实,24.1%的误差对整体夹层结构影响较小,说明公式具有良好的工程应用价值。为以后CFRP圆形胞元蜂窝芯层的设计提供重要基础。 To reduce the thermal deformation, the carbon fiber reinforced polymer(CFRP) circular cell honeycomb core was proposed and designed. The external shear modulus of the core, which plays an important role in calculating the thermal deformation of the sandwich structure based on Reissner theory or ABAQUS software, was discussed in present study. The analytical result of external shear modulus was given based on energy equivalent theory from the stress and strain. Taking the usual lay-up made of T300/epoxy for example, the finite element solution of core calculated by ABAQUS software was compared with the theoretical one, which demonstrates that the maximum error is 10.4%. Using core with (±45°)2 layup and made of T300/epoxy, the double-shear test was carried out. It proves that the error between the experimental and the theoretical solution is 24.1%, which is close to the error of honeycomb core in previous study. The final finite element analysis shows that the 24.1% error has less effect on the mechanical characteristics of whole sandwich structure. Accordingly, analytical expressions for external shear modulus are of great value for engineering application. All the analysis can help for the design of the CFRP circular cell honeycomb core in the future. 国家自然科学基金(51505294)
[1] | SHIN Utsunomiya, TOMOHIRO Kamiya, RYUZO Shimizu, et al. CFRP composite mirrors for space telescopes and their micro dimensional stability[C]. Proceedings of the SPIE. Denver:The International Society for Optical Engineering, 2010, 7739:77392M-1-77392M-7. |
[2] | HARBACH G, HERREN A, HAUSNER T, et al. Lightweight stable sandwich mirrors:Current achievements in the development[C]. Proceedings of SPIE. Barcelona, 2012, 8550:855015-1-855015-7. |
[3] | MARTIN R N, ROMEO R C. Light weight optical telescope structures fabricated from CFRP composites[C]. Proceedings of the SPIE. Denver:The International Society for Optical Engineering, 2007, 6665:66650A-1-66650A-7. |
[4] | STUTE T, WULZ G, SCHEULEN D. Recent developments of advanced structures for space optics at astrium germany[J]. Optical Materials and Structures Technologies, 2003, 17(5):292-301. |
[5] | MARTIN R N, ROMEO R C, BARBER G, et al. Light weight CFRP spherical mirrors for the LHCb Rich-1 detector[C]. SPIE Optical Engineering Applications. The International Society for Optical Engineering, 2007, 6670:66700O-1-66700O-11. |
[6] | JAEUNG Chung, WAAS A M. Compressive response of circular cell polycarbonate honeycombs under inplane biaxial static and dynamic loading I:Experiments[J]. International Journal of Impact Engineering, 2002, 27(7):729-754. |
[7] | 梁森, 陈花玲, 梁天锡. 圆柱形胞元蜂窝夹芯板梁理论的研究[J]. 复合材料学报, 2005, 22(2):137-142. LIANG Sen, CHEN Hualing, LIANG Tianxi. Theory of sandwich plate and beam for a circular cell honeycomb[J]. Acta Materiae Compositae Sinica, 2005, 22(2):137-142(in Chinese). |
[8] | 梁森, 雒磊. 密排圆形胞元蜂窝面内等效弹性参数的模拟仿真[J]. 四川兵工学报, 2013, 34(12):78-83. LIANG Sen, LUO Lei. Simulation of the in-plane equivalent elastic parameters for closely arranged circular cell honeycomb[J]. Journal of Sichuan military engineering, 2013, 34(12):78-83(in Chinese). |
[9] | XIANG X M, LU G, MA G W. Blast response of sandwich beams with thin-walled tubes as core[J]. Engineering Structures, 2016, 127:40-48. |
[10] | GIBSON L J, ASHBY M F, SCHAJER G S. The mechanics of two-dimensional cellular materials[J]. Proceedings of the Royal Society of London A, 1982, 382:25-42. |
[11] | JAEUNG C, WAAS A M. Compressive response of circular cell polycarbonate honeycombs under inplane biaxial static and dynamic loading Ⅱ:Simulations[J]. International Journal of Impact Engineering, 2002, 27(10):1015-1047. |
[12] | KELSEY S, GELLATLY R A, CLARK B W. The shear modulus of foil honeycomb cores[J]. Aircraft Engineering and Aerospace Technology, 1958, 30(10):294-302. |
[13] | 赵剑, 谢宗蕻, 安学峰, 等. 蜂窝芯体材料面外等效弹性模量预测与分析[J]. 航空材料学报, 2008, 28(4):94-100. ZHAO Jian, XIE Zonghong, AN Xuefeng, et al. Prediction and analysis of equivalent out-of-plane modulus of honeycomb core materials[J]. Journal of Aeronautical Materials, 2008, 28(4):94-100(in Chinese). |
[14] | 赵金森. 铝蜂窝夹层板的力学性能等效模型研究[D]. 南京:南京航空航天大学, 2006. ZHAO Jinsen. Research on equivalent models of the mechanical function for aluminium honeycomb sandwich panel[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2006(in Chinese). |
[15] | 富明慧, 徐欧腾. 关于蜂窝芯体面外等效剪切模量的讨论[J]. 固体力学报, 2014, 35(4):334-340. FU Minghui, XU Outeng. Discussion on equivalent transverse shear modulus of honeycomb cores[J]. Chinese Journal of Solid Mechanics, 2014, 35(4):334-340(in Chinese). |
[16] | 夏利娟, 金咸定, 汪庠宝. 卫星结构蜂窝夹层板的等效计算[J]. 上海交通大学学报, 2003, 37(7):999-1001. XIA Lijuan, JIN Xianding, WANG Yangbao. Equivalent analysis of honeycomb sandwich plates for satellite structure[J]. Journal of Shanghai Jiaotong University, 2003, 37(7):999-1001(in Chinese). |
[17] | 沈观林, 胡更开, 刘彬. 复合材料力学[M]. 2版. 北京:清华大学出版社, 2013:49. SHEN Guanlin, HU Gengkai, LIU Bin. Mechanics of composite materials[M]. 2nd ed. Beijing:Tsinghua University Press, 2013:49(in Chinese). |
[18] | 中华人民共和国国家标准化管理委员会. 夹层结构或芯子剪切性能试验方法:GB/T 1455-2005[S]. 北京:中国标准出版社, 2005. Standardization Administration of the People's Republic of China. Test method for shear properties of sandwich constructions or cores:GB/T 1455-2005[S]. Beijing:Standards Press of China, 2005(in Chinese). |
[19] | PAUL B, JACK D, SAM D, et al. Fabrication and thermo-optical properties of the MLS composite primary reflector[C]. Proceedings of Proceedings of the SPIE. Denver:The International Society for Optical Engineering, 1999, 3786:200-205. |
[20] | 钟天麟, 周祝林. CFRP复合材料圆管性能研究[J]. 玻璃钢/复合材料, 2003(3):1-6. ZHONG Tianlin, ZHOU Zhulin. Study of tube properties of carbon fiber composites[J]. Fiber Reinforced Plastics/Composites, 2003(3):1-6(in Chinese). |
[21] | JAEUNG C, WAAS A M. The inplane elastic properties of circular cell and elliptic cell honeycombs[J]. Acta Mechanica, 2000, 144(1):29-35. |