|
- 2018
应用宽频介电谱研究氢氧化铝/环氧树脂复合材料的α和β松弛行为
|
Abstract:
聚合物的松弛行为直接影响其使用范围。本文应用宽频介电谱技术研究了中心粒径为2 μm的氢氧化铝(ATH)填料对环氧树脂复合材料α和β松弛过程的影响。宽频介电谱的测试频率范围为0.1 Hz~2 MHz,温度范围为-100~100℃。ATH填料与环氧树脂的质量比为0%、20%、40%、60%、80%和100%。结果表明:填料对复合材料的α松弛过程影响较小,Vogel温度随填料的增加先减小后增大;β松弛的表观活化能随填料的增加先增大后减小,当ATH填料质量比为40%时,β松弛的表观活化能达到最大值。 The application of polymer is limited by its relaxations behaviors. The main research of this paper was focused on the effect which the aluminum trihydroxide (ATH) filler has on α relaxation and β relaxation of epoxy composites. And the broadband dielectric spectroscopy technology was applied to investigate such effect in this paper. In our experiments, the test condition was that the broad frequency of broadband dielectric spectroscopy ranged from 0.1 Hz to 2 MHz and the temperature of the broadband dielectric spectroscopy was from-100℃ to 100℃, also the inorganic filler must be the ATH powder with the particle size of 2 μm. The pure epoxy resin and the epoxy resin to which was added different proportion (0%, 20%, 40%, 60%, 80% and 100%) of the fillers were prepared and the dielectric properties of each of them was measured. The results show that, the quantities of the inorganic fillers have little effects on α relaxation but have an obvious and significant effect on β relaxation. With the quantities of the inorganic fillers increasing, the Vogel temperature decreases at first and then increases. On the contrary, the β relaxation apparent activation energy of ATH/epoxy composite increases at first and then decreases. 国家自然科学基金(51607165);中国工程物理研究院科学技术发展基金(2015B0402077)
[1] | 田付强, 杨春, 何丽娟, 等. 聚合物/无机纳米复合电介质介电性能及其机理最新研究进展[J]. 电工技术学报, 2011, 26(3):1-12. TIAN Fuqiang, YANG Chun, HE Lijuan, et al. Recent research advancement in dielectric properties and the corresponding mechanism of polymer/inorganic nanocomposite[J]. Transactions of China Electrotechnical Society, 2011, 26(3):1-12(in Chinese). |
[2] | 黄兴溢, 江平开. 聚合物绝缘与功能电介质材料的若干研究热点评述[J]. 绝缘材料, 2016, 49(9):1-9. HUANG Xingyi, JIANG Pingkai. Review of some hot topics on electrically insulating and dielectric polymer materials[J]. Insulating Materials, 2016, 49(9):1-9(in Chinese). |
[3] | KREMER F. Dielectric spectroscopy-yesterday, today and tomorrow[J]. Journal of Non-Crystalline Solids, 2002, 305(1-3):1-9. |
[4] | 左彪, 何婷婷, 李俊燕, 等. 聚合物薄膜玻璃化转变及其分子松弛行为的研究进展[J]. 中国科学:化学, 2015, 45(2):139-157. ZUO Biao, HE Tingting, LI Junyan, et al. Progresses in the glass transition and molecular dynamics of thin polymer film[J]. Scientia Sinica Chimica, 2015, 45(2):139-157(in Chinese). |
[5] | 朱雨涛, 高乃奎, 王新珩, 等. 含填料聚合物(EPDM)的松弛过程[J]. 高分子材料科学与工程, 1998, 14(3):97-99. ZHU Yutao, GAO Naikui, WANG Xinheng, et al. Relaxation process of filler EPDM[J]. Polymer Materials Science & Engineering, 1998, 14(3):97-99(in Chinese). |
[6] | PENG H G, KONG Y P, YEE A F. Relaxation kinetics of nanostructures on polymer surface:Effect of stress, chain mobility, and spatial confinement[J]. Macromolecules, 2010, 43(1):409-417. |
[7] | 王龙飞, 张俊伟, 李光, 等. 不同纳米填料填充聚偏氟乙烯基复合材料的介电松弛行为[J]. 复合材料学报, 2014, 31(4):880-887. WANG Longfei, ZHANG Junwei, LI Guang, et al. Dielectric relaxation behavior of PVDF-based composites fil1ed with different nanofillers[J]. Acta Materiae Compositae Sinica, 2014, 31(4):880-887(in Chinese). |
[8] | FREMER F, SCHOENHALS P D A. Broadband dielectric spectroscopy[M]. Berlin:Springer, 2003. |
[9] | PISSIS P, FRAGIADAKIS D, KANAPITSAS A, et al. Broadband dielectric relaxation spectroscopy in polymer nanocomposites[J]. Macromolecular Symposia, 2008, 265(1):12-20. |
[10] | KEDDIE J L, JONES R, CORY R A. Size-dependent depression of the glass transition temperature in polymer films[J]. Europhysics Letters, 1994, 27(1):59-64. |
[11] | ALCOUTLABI M, MCKENNA G B, Topical review:Effects of confinement on material behavior at the nanometre size scale[J]. Journal of Physics Condensed Matter, 2005, 17(15):461-524. |
[12] | RUNT J P, FITZGERALD J J. Dielectric spectroscopy of polymeric materials[M]. Washington DC:American Chemical Society, 1997. |
[13] | SMAOUI H, AROUSC M, GUERMAZIA H. Study of relaxations in epoxy polymer by thermally stimulated depolarization current (TSDC) and dielectric relaxation spectroscopy (DRS)[J]. Journal of Alloys and Compounds, 2010, 489(2):429-436. |
[14] | MAITY P, POOVAMMA P K, BASU S, et al. Dielectric spectroscopy of epoxy resin with and without nanometric alumina fillers[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2009, 16(5):1481-1488. |
[15] | TAGAMI N, HYUGA M, OHKI Y, Comparison of dielectric properties between epoxy composites with nanosized clay fillers modified by primary amine and tertiary amine[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(1):214-220. |
[16] | DUDOWICZ J, FREED K F, DOUGLAS J F. The glass-transition temperature of polymer melts[J]. Journal of Physical Chemistry B, 2005, 109(45):21285-21292. |
[17] | FELDMAN Y, PUZENKO A, RYABOV Y. Non-Debye dielectric relaxation in complex materials[J]. Chemical Physic, 2002, 284(1):139-168. |
[18] | MAYES A M. Glass transition of amorphous polymer surfaces[J]. Macromolecules, 1994, 27(11):3114-3115. |
[19] | KAO K C. Dielectric phenomena in solids[M]. SanDiego:Elsevier Academic Press, 2004:41. |
[20] | SCH?NHALS A, KREMER F, HOFMANN A, et al. Anomalies in the scaling of the dielectric α-relaxation[J]. Physical Review Letters, 1993, 70(22):3459-3462. |