|
- 2018
取向磁场对钴颗粒填充硅橡胶磁流变弹性体动态黏弹性的影响
|
Abstract:
为了研究取向磁场强度对磁流变弹性体(MRE)动态黏弹性的影响规律及影响机制,采用溶剂热法制备球状钴颗粒,SEM和XRD表征结果显示,其粒径为1~2 μm,呈密排六方结构。以硅橡胶为基体,以钴颗粒为填充相,分别在0 mT、480 mT、1 154 mT取向磁场强度下制备MRE,并在不同工况下测试其动态黏弹性。实验结果表明,Co颗粒填充的MRE微观结构的有序性随取向磁场强度增大而增加,其储能模量G'、损耗模量G ″和磁流变效应也随之提高;当取向磁场强度增大到一定程度,由于有序结构趋于稳定,动态黏弹性随取向磁场的变化较小。 In order to investigate the mechanism of the effect of orientation magnetic field on dynamic viscoelasticity of cobalt particles filled magnetorheological elastomer (MRE), cobalt particles were synthesized by a solvothermal method. The XRD and SEM results indicate the spherical cobalt particles have close-packed hexagonal structure with particle size within the range of 1-2 μm. Silicone rubber was used as the matrix to prepare cobalt particles filled MRE. During the curing process, different orientation fields (0 mT, 480 mT and 1 154 mT) were applied to prepare different MRE, and their dynamic viscoelasticity were tested. The results indicate the ordered structure formed by the cobalt particles was enhanced with increasing orientation field. As a result, the storage modulus G ' and the loss modulus G ″ of Co particles filled(MRE) increase with increasing orientation field. However, when the orientation field exceeds a critical value, the ordered becomes stable, and the effect of orientation field on dynamic viscoelasticity of MREs becomes insignificant. 国家自然科学基金(51478088)
[1] | DANAS K, KANKANALA S V, TRIANTAFYLLIDIS N. Experiments and modeling of iron-particle-filled magnetorheological elastomers[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(1):120-138. |
[2] | QIAO X, LU X, GONG X, et al. Effect of carbonyl iron concentration and processing conditions on the structure and properties of the thermoplastic magnetorheological elastomer composites based on poly (styrene-b-ethylene-co-butylene-b-styrene) (SEBS)[J]. Polymer Testing, 2015, 47(4):51-58. |
[3] | WU J K, GONG X L, FAN Y C, et al. Improving the magnetorheological properties of polyurethane magnetorheological elastomer through plasticization[J]. Journal of Applied Polymer Science, 2012, 123(4):2476-2484. |
[4] | FAN Y C, GONG X L, XUAN S H, et al. Interfacial friction damping properties in magnetorheological elastomers[J]. Smart Materials and Structures, 2011, 20(3):035007. |
[5] | GONG X L, CHEN L, LI J F. Study of utilizable mangetorheological elastomers[J]. International Journal of Modern Physics B, 2007, 21(28-29):4875-4882. |
[6] | CHEN L, GONG X L, JIANG W Q, et al. Investigation on magnetorheological elastomers based on natural rubber[J]. Journal of Materials Science, 2007, 42(14):5483-5489. |
[7] | 廖干良, 廖昌荣, 文慧, 等. 磁致链化对磁流变弹性体压阻效应的影响[J]. 复合材料学报, 2017, 34(9):2085-2092. LIAO Ganliang, LIAO Changrong, WEN Hui, et al. Effect of particle preorientation on the piezoresistivity of magnetorheological elastomer[J]. Acta Materiae Compositae Sinica, 2017, 34(9):2085-2092(in Chinese). |
[8] | WU J, GONG X L, FAN Y, et al. Anisotropic polyurethane magnetorheological elastomer prepared through in situ polycondensation under a magnetic field[J]. Smart Materials and Structures, 2010, 19(10):105007. |
[9] | YU M, ZHU M, FU J, et al. A dimorphic magnetorheological elastomer incorporated with Fe nano-flakes modified carbonyl iron particles:Preparation and characterization[J]. Smart Materials and Structures, 2015, 24(11):115021. |
[10] | 王奇, 董旭峰, 李芦钰, 等. 磁流变弹性体松弛行为的本构描述[J]. 复合材料学报, 2013(s1):138-141. WANG Qi, DONG Xufeng, LI Luyu, et al. Constitutive description for relaxation behavior of magenetorheological elastomer[J]. Acta Materiae Compositae Sinica, 2013(s1):138-141(in Chinese). |
[11] | JOLLY M R, CARLSON J D, MUNOZ B C. A model of the behaviour of magnetorheological materials[J]. Smart Materials and Structures, 1996, 5(5):607-614. |
[12] | ZHANG X, LI W, GONG X L. An effective permeability model to predict field-dependent modulus of magnetorheological elastomers[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(9):1910-1916. |
[13] | DENG H, WANG L, GONG X. Development of an adaptive tuned vibration absorber with magnetorheological elastomer[J]. Smart Materials and Structures, 2006, 15(5):N111-N116. |
[14] | ZABORSKI M, MALSOWSKI M. Magnetorheological elastomer composites[J]. Progress in Colloid and Polymer Science, 2011, 138:21-25. |
[15] | PADALKA O, SONG H J, WERELEY N M, et al. Stiffness and damping in Fe, Co, and Ni nanowire-based magnetorheological elastomeric composites[J]. IEEE Transactionson Magnetics, 2010, 46(6):2275-2277. |
[16] | LI J, GONG X L, ZHU H, et al. Influence of particle coating on dynamic mechanical behaviors of magnetorheological elastomers[J]. Polymer Testing, 2009, 28(3):331-337. |
[17] | KOO J H, DAWSONG A, JUNG H J. Characterization of actuation properties of magnetorheological elastomers with embedded hard magnetic paticles[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(9):1049-1054. |
[18] | MELENEV P, RAIKHER Y, STEPANOV G, et al. Modeling of the field-induced plasticity of soft magnetic elastomers[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(6):531-538. |
[19] | YORK D, WANG X, GORDANINEJAD F. A new MR fluid-elastomer (MRF-E) vibration isolator[M]//Electrorheological Fluids and Magnetorheological Suspensions, Singapore:World Scientific Publishing, 2007:87-93. |
[20] | KALETA J, KRóLEWICZ M, LEWANDOWSKI D. Magnetomechanical properties of anisotropic and isotropic magnetorheological composites with thermoplastic elastomer matrices[J]. Smart Materials and Structures, 2011, 20(8):085006. |
[21] | NGUYEN V Q, RAMANUJAN R V. Novel coiling behavior in magnet-polymer composites[J]. Macromolecular Chemistry and Physics, 2010, 211(6):618-626. |
[22] | KASHIMA S, MIYASAKA F, HIRATA K. Novel soft actuator using magnetorheological elastomer[J]. IEEE Transactions on Magnetics, 2012, 48(4):1649-1652. |
[23] | B?SE H, R?DER R. Magnetorheological elastomers with high variability of their mechanical properties[C]//Journal of Physics:Conference Series. 11th Conference on Electrorheological Fluids and Magnetorheological Suspensions, Dresden:IOP Publishing, 2009, 149(1):012090. |
[24] | CHEN L, GONG X L, JIANG W Q, et al. Investigation on magnetorheological elastomers based on natural rubber[J]. Journal of Materials Science, 2007, 42(14):5483-5489. |
[25] | WANG Y, HU Y, WANG Y, et al. Magnetorheological elastomers based on isobutylene-isoprene rubber[J]. Polymer Engineering and Science, 2006, 46(3):264-268. |
[26] | HU Y, WANG Y L, GONG X Q, et al. Magnetorheological elastomers based on polyurethane/Si-rubber hybrid[J]. Polymer Testing, 2005, 24(3):324-329. |