|
- 2018
放电等离子烧结Ni/TiB2-TiC复合材料微观组织及磨损性能
|
Abstract:
[1] | 马爱珍, 崔洪芝, 崔德运, 等. Al6Si2O13晶须和TiC颗粒复合强化多孔Al2TiO5基复合材料[J]. 复合材料学报, 2016, 33(7):1515-1523. MA A Z, CUI C Z, CUI H Y, et al. Al6Si2O13 whisker and TiC particles co-strengthing porous Al2TiO5 matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(7):1515-1523(in Chinese). |
[2] | HUANG X G, YIN C, HUANG J, et al. Hypervelocity impact of TiB2-based composites as front bumpers for space shield applications[J]. Materials & Design, 2016, 97:473-482. |
[3] | CHENG L X, XIE Z P, LIU G W, et al. Spark plasma sintering of TiC-based composites toughened by submicron SiC particles[J]. Ceramics International, 2013, 39(5):5077-5082. |
[4] | YANG J, PAN L M, GU W, et al. Oxidation behavior and kinetics of in situ (TiB2+TiC)/Ti3SiC2 composites in air[J]. Ceramics International, 2012, 38(1):159-168. |
[5] | FU Z Z, KOC R. Sintering and mechanical properties of TiB2-TiC-Ni using submicron borides and carbides[J]. Materials Science & Engineering A, 2016, 676:278-288. |
[6] | XU J Y, ZOU B L, TAO S Y, et al. Fabrication and properties of Al2O3-TiB2-TiC/Al metal matrix composite coatings by atmospheric plasma spraying of SHS powders[J]. Journal of Alloys & Compounds, 2016, 672:251-259. |
[7] | WEI N, CUI H Z, WU J, et al. Effects of forming conditions and TiC-TiB2 contents on the microstructures of self-propagating high-temperature synthesized NiAl-TiC-TiB2 composites[J]. Acta Metallurgica Sinica (English Letters), 2014, 28(1):39-47. |
[8] | WEI N, CUI H Z, MA L, et al. Porous TiC-TiB2-NiAl composites and effect of NiAl contents on pore structure and microstructure[J]. Powder Metallurgy, 2015, 58(4):273-280. |
[9] | ZOHARI S, SADEGHIAN Z, LOTFI B, et al. Application of spark plasma sintering (SPS) for the fabrication of in situ Ni-TiC nanocomposite clad layer[J]. Journal of Alloys & Compounds, 2015, 633:479-483. |
[10] | VALLAURI D, DEORSOLA F A. Synthesis of TiC-TiB2-Ni cermets by thermal explosion under pressure[J]. Materials Research Bulletin, 2009, 44(7):1528-1533. |
[11] | YU L, YANG J, QIU T, et al. Microstructure and mechanical properties of (ZrB2+ZrC)/Zr3[Al(Si)]4C6 composites prepared by in situ hot-pressing[J]. Materials Letters, 2013, 96(4):188-191. |
[12] | GHAHREMANI D, EBADZADEH T, MAGHSODIPOUR A, et al. Densification, microstructure and mechanical properties of mullite-TiC composites prepared by spark plasma sintering[J]. Materials Letters, 2015, 41(2):1957-1962. |
[13] | GUTIERREZ-GONZALEZ C F, SUAREZ M, POZHIDAEV S, et al. Effect of TiC addition on the mechanical behaviour of Al2O3-SiC whiskers composites obtained by SPS[J]. Journal of the European Ceramic Society, 2016, 36(8):2149-2152. |
[14] | RADAJEWSKI M, HENSCHEL S, GRUTZNER S, et al. Microstructure and mechanical properties of bulk TiN-AlN composites processed by FAST/SPS[J]. Materials Letters, 2016, 42(8):10220-10227. |
[15] | 郭温, 米国际, 张金龙, 等. TA15合金表面Ni-SiC复合镀层的摩擦磨损性能[J]. 无机材料学报, 2016, 31(2):195-200. GUO W, MI G J, ZHANG J L, et al. Friction and wear behavior of Ni-SiC composite coating prepared on TA15 alloy[J]. Journal of Inorganic Materials, 2016, 31(2):195-200(in Chinese). |
[16] | WU N, XUE F D, YANG Q M, et al. Microstructure and mechanical properties of TiB2-based composites with high volume fraction of Fe-Ni additives prepared by vacuum pressureless sintering[J]. Ceramics International, 2017, 43(1):1394-1401. |
[17] | 孙培秋, 朱德贵, 蒋小松, 等. 原位合成TiB2-TiC0.8-SiC复相陶瓷的微观组织与性能研究[J]. 无机材料学报, 2013, 28(4):363-368. SUN P Q, ZHU D G, JIANG X S, et al. Research on microstructures and properties of in-situ synthesis of TiB2-TiC0.8-SiC multiphase ceramics[J]. Journal of Inorganic Materials, 2013, 28(4):363-368(in Chinese). |
[18] | CUI H Z, MA L, CAO L L, et al. Effect of NiAl content on phases and microstructures of TiC-TiB2-NiAl composites fabricated by reaction synthesis[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(2):346-353. |
[19] | SONG X J, CUI H Z, CAO L L, et al. Microstructure and evolution of (TiB2+Al2O3)/NiAl composites prepared by self-propagation high-temperature synthesis[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7):1878-1884. |
[20] | DEMIRSKYI D, SAKKA Y, VASYLKIV O. High-temperature reactive spark plasma consolidation of TiB2-NbC ceramic composites[J]. Ceramics International, 2015, 41(9):10828-10834. |
[21] | CUI H Z, LIU W, CAO L L, et al. Effects of B4C particle size on pore structures of porous TiB2-TiC by reaction synthesis[J]. Journal of the European Ceramic Society, 2015, 35(13):3381-3388. |
[22] | LIU H T, WU W W, ZOU J, et al. In situ synthesis of ZrB2-MoSi2 platelet composites:Reactive hot pressing process, microstructure and mechanical properties[J]. Ceramics International, 2012, 38(6):4751-4760. |
[23] | PAPITHA R, SURESH M B, CHAKRAVARTY D, et al. Eutectoid decomposition of aluminum titanate (Al2TiO5) ceramics under Spark Plasma (SPS) and Conventional (CRH) thermal treatments[J]. Materials Letters, 2014, 40(1):659-666. |
[24] | KANT R, PRAKASH U, AGARWALA V, et al. Wear behaviour of an FeAl intermetallic alloy containing carbon and titanium[J]. Intermetallics, 2015, 61:21-26. |
[25] | DU B S, PAITAL S R, DAHOTRE N B, et al. Synthesis of TiB2-TiC/Fe nano-composite coating by laser surface engineering[J]. Optics & Laser Technology, 2013, 45(1):647-653. |
[26] | YUE X Y, CAI Z X, LU X H, et al. Effect of Ni content on microstructures and mechanical properties of hot-pressed TiC-TiB2-Ni composite[J]. Materials Science & Engineering A, 2016, 668:208-214. |
[27] | YANG J, PAN L M, GU W, et al. Microstructure and mechanical properties of in situ synthesized (TiB2+TiC)/Ti3SiC2 composites[J]. Ceramics International, 2012, 38(1):649-655. |
[28] | LIN Y H, LEI Y P, FU H G, et al. Mechanical properties and toughening mechanism of TiB2/NiTi reinforced titanium matrix composite coating by laser cladding[J]. Materials & Design, 2015, 80:82-88. |
[29] | WANG X H, ZHANG M, DU B S, et al. Microstructure and wear properties of laser clad TiB2+TiC/Fe composite coating[J]. Surface Review & Letters, 2012, 19(5):1250052. |
[30] | TU R, LI N, LI Z Q, et al. Preparation of BC-ZrB-SiC ternary eutectic composites by arc melting and their properties[J]. Material Research Innovations, 2016, 19(s10):26-29. |
[31] | WANG L M, LIU H L, HUANG C Z, et al. Microstructure and mechanical properties of TiC-TiB2 composite cermet tool materials at ambient and elevated temperature[J]. Ceramics International, 2016, 42(2):2717-2723. |
[32] | 黄雪刚, 张龙, 赵忠民, 等. 超重力场燃烧合成TiC-TiB2凝固陶瓷组织与性能[J]. 复合材料学报, 2012, 29(5):113-120. HUANG X G, ZHANG L, ZHAO Z M, et al. Microstructure and properties of solidified TiC-TiB2 composites prepared by combustion synthesis in high-gravity field[J]. Acta Materiae Compositae Sinica, 2012, 29(5):113-120(in Chinese). |
[33] | CHEN H H, XU C Y, CHEN J, et al. Microstructure and phase transformation of WC/Ni60B laser cladding coatings during dry sliding wear[J]. Wear, 2008, 264(7-8):487-493. |
[34] | ZHAO G L, HUANG C Z, HE N, et al. Microstructural development and mechanical properties of reactive hot pressed nickel-aided TiB2-SiC ceramics[J]. International Journal of Refractory Metals & Hard Materials, 2016, 61:13-21. |
[35] | YUAN Y L, LI Z G. Effects of rod carbide size, content, loading and sliding distance on the friction and wear behaviors of (Cr, Fe)7C3-reinforced α-Fe based composite coating produced via PTA welding process[J]. Surface & Coatings Technology, 2014, 248:9-22. |
[36] | SHI X L, WANG M, ZHAI W Z, et al. Influence of Ti3SiC2 content on tribological properties of NiAl matrix self-lubricating composites[J]. Materials & Design, 2013, 45:179-189. |