全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

KH560功能化氧化石墨烯/光敏性不饱和聚酯树脂复合材料的制备与性能
Synthesis and characterization of reinforced photosensitive unsaturated polyester by KH560 functionalized nano graphene oxide

DOI: 10.13801/j.cnki.fhclxb.20170322.004

Keywords: 光敏树脂,KH560,功能化氧化石墨烯,体积收缩率,力学性能
photosensitive resin
,KH560,functionalized graphene oxide,volume shrinkage,mechanical property

Full-Text   Cite this paper   Add to My Lib

Abstract:

合成了γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)功能化氧化石墨烯(FGO),通过红外光谱和热重进行了表征分析。通过加入FGO对混杂型(自由基-阳离子混杂机制)光敏树脂(CRCPR)进行改性,探讨了FGO的加入对CRCPR的黏度、凝胶率和体积收缩率的影响,并测试了固化FGO/CRCPR复合材料的力学性能。结果表明:与氧化石墨烯(GO)相比,由于功能团的引入,FGO在树脂中呈现良好的分散性,少量FGO的引入既未明显改变树脂的黏度,也未降低树脂的凝胶率;同时,极少量FGO的加入即可大幅提高固化FGO/CRCPR复合材料的力学性能,当FGO的质量分数为0.06%时,体积收缩率降低了37%,拉伸强度和弯曲强度分别提高了71.8%和26.9%,冲击强度也提高了49.7%。良好的力学性能与FGO良好分散性及FGO与CRCPR基体良好的界面性能有关。 The γ-(2,3-epoxypropoxy) propytrimethoxysilane(KH560) graphene oxide (FGO) was prepared and characterized with FTIR and TGA. With the addition of FGO into radical-initiated and cationic-initiated photosensitive resins (CRCPR), the viscosity, gel rate and volume shrinkage of FGO/CRCPR were investigated. The mechanical properties of FGO/CRCPR composites were tested. The results show that compared with graphene oxide (GO), the viscosity doesn't markedly increase with the addition of FGO and the gel rate also doesn't reduce significantly, indicating that FGO has a good compatibility with the matrix. The results indicate that the volume shrinkage decreases by 37%, the tensile, the bending and the impact strength of the cured nano FGO/CRCPR composites, increase by 71.8%, 26.9% and 49.7% respectively, when the mass fraction is 0.06%, due to the excellent mechanical properties of FGO itself, the good compatibility of FGO with the matrix and the strong interface bonding between FGO and the matrix. 航空科学基金(2014ZF52070);江苏省三维打印装备与制造重点实验室开放课题资助项目(3DL201503)

References

[1]  ARCUATE K, MANN B, WICKER R. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds[J]. Acta Biomater, 2010, 6(3):1047-1054.
[2]  WANG J, GOYANES A, GAISFORD S. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms[J]. International Journal of Pharmaceutics, 2016, 503(1-2):207-212.
[3]  WU P, WANG J, WANG X Y. A critical review of the use of 3D printing in the construction industry[J]. Automation in Construction, 2016, 68:21-31.
[4]  SHEN L, LI Y W, ZHENG J, et al. Modified epoxy acrylate resin for photocurable temporary protective[J]. Progress in Organic Coatings, 2015, 89:17-25.
[5]  MANOJLOVIC D, DRAMICANIN M D, MILOSEVIC M, et al. Effects of a low-shrinkage methacrylate monomer and monoacylphosphine oxide photoinitiator on curing efficiency and mechanical properties of experimental resin-based composites[J]. Materials Science and Engineering C, 2016, 58:487-494.
[6]  DALAQ A S, ABUEIDDA D W, ABUALRUB R K. Mechanical properties of 3D printed interpenetrating phase composites with novel architectured 3D solid-sheet reinforcements[J]. Composites Part A:Applied Science and Manufacturing, 2016, 84:266-280.
[7]  李金焕, 王瑞海, 王堂洋, 等. 石墨烯/氰酸酯-环氧树脂复合材料的制备和性能[J]. 复合材料学报, 2014, 31(5):1154-1159. LI J H, WANG R H, WANG T Y, et al. Preparation and properties of graphene/cyanate ester-epoxy composites[J]. Acta Materiae Compositae Sinica, 2014, 31(5):1154-1159(in Chinese).
[8]  HUMMERS W S, OFFEMAN R E. Preparation of graphite oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339.
[9]  王玉, 高延敏, 韩莲, 等. 偶联剂改性氧化石墨烯/环氧树脂复合材料的研究[J]. 现代塑料加工应用, 2015(5):44-48. WANG Y, GAO Y M, HAN L, et al. Study on coupling agent-modified graphene oxide/epoxy resin composites[J]. Modern Plastics Processing and Application, 2015(5):44-48(in Chinese).
[10]  ASTM International. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials:ASTM D790-20[S]. West Conshohocken:ASTM Standards, 2010.
[11]  ASTM International. Standard test methods for tensile properties of unreinforced and reinforced plastics and electrical insulating materials:ASTM D638[S]. West Conshohocken:ASTM Standards, 2014.
[12]  CASTRO D T, VALENTE M L C, SILVA C H L, et al. Evaluation of antibiofilm and mechanical properties of new nanocomposites based on acrylic resins and silver vanadate nanoparticles[J]. Archives of Oral Biology, 2016, 67:46-53.
[13]  COMPTON O C, JAIN B, DIKIN D A, et al. Chemically active reduced graphene oxide with tunable C/O ratios[J]. ACS Nano, 2011, 5(6):4380-4391.
[14]  ZHANG F, XU H, YUE D, et al. Graphene covalently modified by DNA G-base[J]. Journal of Physics Chemistry C, 2013, 117(7):3513-3519.
[15]  王冲, 南辉, 王刚. 硅烷偶联剂改性纳米TiO2对PVC紫外屏蔽性能的影响[J]. 中国塑料, 2014, 28(9):61-65. WANG C, NAN H, WANG G. Effect of silane coupling agent modificated nanometer TiO2 on the UV shielding properties of PVC[J]. China Plastics, 2014, 28(9):61-65(in Chinese).
[16]  雷定锋, 马文石, 肖舒文. 功能化石墨烯/聚乙烯醇缩丁醛纳米复合膜的制备与表征[J]. 高分子材料科学与工程, 2015, 31(4):148-151. LEI D F, MA W S, XIAO S W. Preparation and characterization of functionalized graphene/polyvinyl butyral nanocomposite membrane[J]. Polymer Materials Science & Engineering, 2015, 31(4):148-151(in Chinese).
[17]  MAKTEDARA S S, MEHETRE S S, SINGH M, et al. Ultrasound irradiation:A robust approach for direct functionalization of graphene oxide with thermal and antimicrobial aspects[J]. Ultrasonics Sonochemistry, 2014, 21(4):1407-1416.
[18]  WU G S, MA L C, WANG Y W. Interfacial properties and impact toughness of methylphenylsilicone resin composites by chemically grafting POSS and tetraethylenepentamine onto carbon fibers[J]. Composites Part A:Applied Science and Manufacturing, 2016, 84:1-8.
[19]  倪秀元, 王璐, 廖晚凤. 一种氧化石墨烯与丙烯酸酯复合的光固化材料及制备方法:中国, CN 201510777960.3[P]. 2016-02-03. NI X Y, WANG L, MIAO W F. A composites of acrylate photo-curing materials with graphene oxide and its preparation method:Chinese patent, CN 201510777960.3[P]. 2016-02-03(in Chinese).
[20]  魏燕彦, 马凤国, 林润雄. 一种氧化石墨烯/光固化树脂复合材料及其制备方法和应用:中国, CN 201410054242.9[P]. 2014-05-28. WEI Y Y, MA F G, LIN R X. A graphene oxide/curable resin composites and its preparation method and application:Chinese patent, CN 201410054242.9[P]. 2014-05-28(in Chinese).
[21]  SHAN X, HUANG C, YANG H, et al. The thermal expansion and tensile properties of nanofiber-ZrW2O8 reinforced epoxy resin nanocomposites[J]. Physics Procedia, 2015, 67:1056-1061.
[22]  XIAO P, ZHANG J, DUMUR F, et al. Visible light sensitive photoinitiating systems:Recent progress in cationic and radical photopolymerization reactions under soft conditions[J]. Progress in Polymer Science, 2015, 41:32-66.
[23]  XIE W H, MENG S H, DING L, et al. High velocity impact tests on high temperature carbon-carbon composites[J]. Composites Part B:Engineering, 2016, 98:30-38.
[24]  TILBROOK D A, CLARKE R L, HOWLE N E, et al. Photocurable epoxy-polyol matrices for use in dental composites I[J]. Biomaterials, 2000, 21(17):327-341.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133