|
- 2018
梳状相变聚合物为芯材的复合调温纤维的制备及热性能
|
Abstract:
通过自由基聚合方法成功制备的新型梳状相变聚合物-聚二乙二醇十六烷基醚单丙烯酸酯(PC16E2AC),其相变温度为35℃,十分接近人体温度。选取PC16E2AC为芯材,丙烯腈偏氯乙烯共聚物(P(AN-co-VDC))为皮材,利用同轴湿法纺丝工艺制备了一系列热焓值不同的PC16E2AC-P(AN-co-VDC)复合调温纤维,并对其形貌、结构和热性能进行了表征。结果表明:制备的PC16E2AC-P(AN-co-VDC)复合调温纤维直径均一,表面光滑,具有明显的皮芯结构。并且随着皮芯挤出比(S:C)的增加,皮材直径逐渐增大,芯材直径逐渐减小,复合调温纤维的断裂强度逐渐增大,热焓值也从23 J/g逐渐增加到57 J/g。此外,PC16E2AC-P(AN-co-VDC)复合调温纤维在低于220℃具有良好的热稳定性。300次的冷/热循环测试和24 h的抽提实验表明,该复合调温纤维具有良好的耐热循环稳定性和抗渗透性。值得注意的是,PC16E2AC-P(AN-co-VDC)复合调温纤维的相变温度始终在35℃左右,表明其有望用于智能纺织品领域。 A novel phase change polymer, poly(diethylene glycol hexadecyl ether acrylate) (PC16E2AC), was successfully synthesized by the free radical polymerization method. PC16E2AC with melting peak temperature at approximately 35℃, being close to the temperature of human skin, was selected as the core material to fabricate a series of core-sheath thermo-regulating fibers with various heat enthalpies via bicomponent wet-spinning technology with acrylonitrile-vinylidene chloride copolymer (P(AN-co-VDC)) being employed as sheath. The morphology, microstructure and thermal property of the composite thermo-regulated fibers were characterized systematically. The results show that the PC16E2AC-P(AN-co-VDC) composite thermo-regulated fibers have uniform diameter, smooth surface and obvious core-sheath structure. Moreover, with increasing of the core-sheath extrusion ratio (S:C), the diameter of sheath increases gradually while the diameter of core shows the opposite trend. The breaking strength of PC16E2AC-P(AN-co-VDC) composite fibers improves steadily and the enthalpy also changes from 23 J/g to 57 J/g in the meantime. The fibers have good thermal stability under 220℃. 300 times thermal cycle test and 24 hours extraction experiment in toluene shed light on the good thermal reliability and excellent anti-osmosis property of the PC16E2AC-P(AN-co-VDC) composite thermo-regulated fibers. It is noted that the melting peak temperature of the PC16E2AC-P(AN-co-VDC) composite thermo-regulated fibers always remains at about 35℃, which indicates the potential for their application in smart textiles. 天津市应用基础与前沿计划重点项目(16JCZDJC37000)
[1] | WANG H X, HAN X, SHI H F, et al. Crystalline structure and phase behavior of n-alkylated polypyrrole comb-like polymers[J]. Crystengcomm, 2014, 16(30):7090-7096. |
[2] | FU K, NEMATSU T, SONE M, et al. Aromatic polyesters with flexible side chains. 8. studies on long periodical structure observed in layered crystalline phase[J]. Macromolecules, 2000, 33(22):8367-8370. |
[3] | ALCAN C, SARI A, KARAIPEKLI A, et al. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2009, 93(1):143-147. |
[4] | ZHANG X X, WANG X C, TAO X M, et al. Energy storage polymer/micro PCMs blended chips and thermo-regulated fibers[J]. Journal of Materials Science, 2005, 40(14):3729-3734. |
[5] | ZDRAVEVA E, FANG J, MIJOVIC B, et al. Electrospun poly(vinyl alcohol)/phase change material fibers:Morphology, heat properties, and stability[J]. Industrial & Engineering Chemistry Research, 2015, 54(35):8706-8712. |
[6] | BRYANT Y G, COLVIN D P. Fiber with reversible enhanced thermal storage properties and fabrics made therefrom:United States Patent, 4756958[P]. 1988-12-07. |
[7] | 宋晓庆, 姜猛进, 叶光斗, 等. 石蜡/聚乙烯醇相变储能纤维的制备与表征[J]. 复合材料学报, 2008, 25(1):17-22. SONG X Q, JIANG M J, YE G D, et al. Preparation and characterization of paraffin/polyvinyl alcohol phase change fibers for energy storage[J]. Acta Materiae Compositae Sinica, 2008, 25(1):17-22(in Chinese). |
[8] | YONG J, DING E Y, LI G K. Study on transition characteristics of PEG/CDA solid-solid phase change materials[J]. Polymer, 2002, 43(1):117-122. |
[9] | 张梅, 那莹, 姜振华. 接枝共聚法制备聚乙二醇(PEG)/聚乙烯醇(PVA)高分子固-固相变材料性能研究[J]. 高等学校化学学报, 2005, 26(1):170-174. ZHANG M, NA Y, JIANG Z H. Preparation and properties of polymeric solid-solid phase change materials of polyethylene glycol (PEG)/poly(vinyl alcohol) (PVA) copolymers by graft copolymerization[J]. Chemical Journal of Chinese Universities, 2005, 26(1):170-174(in Chinese). |
[10] | WEN P H, LEVON K, HO K S, et al. Side-chain order in poly(3-alkylthiophenes)[J]. Macromolecules, 2002, 26(6):1318-1323. |
[11] | PLATE N A, SHIBAEV V P, PETRUKHIN B S, et al. Structure of crystalline polymers with unbranched long side chains[J]. Journal of Polymer Science Part A:Polymer Chemistry, 1971, 9(8):2291-2298. |
[12] | LIU L T, WANG H X, QI X F, et al. Shape-stabilized phase change materials based on poly(ethylene-graft-maleic anhydride)-g -alkyl alcohol comb-like polymers[J]. Solar Energy Materials & Solar Cells, 2015, 143:21-28. |
[13] | WANG H X, SHI H F, QI M, et al. Structure and thermal performance of poly(styrene-co -maleic anhydride)-g -alkyl alcohol comb-like copolymeric phase change materials[J]. Thermochimica Acta, 2013, 564:34-38. |
[14] | SARI A, ALKAN C, BICER A. Synthesis and thermal properties of polystyrene-graft-PEG copolymers as new kinds of solid-solid phase change materials for thermal energy storage[J]. Materials Chemistry & Physics, 2012, 133(1):87-94. |
[15] | LOPEZ-CARRASQUERO F, GIAMMANCO G, DIAZ A, et al. Synthesis, characterization and side chains crystallization of comb-like poly(p-n -alkylstyrene)s[J]. Polymer Bulletin, 2009, 63(1):69-78. |
[16] | 张智力, 唐孝芬, 孟洁云, 等. 二乙二醇十八烷基醚单甲基丙烯酸酯及其聚合物的制备和表征[J]. 高等学校化学学报, 2014, 35(1):175-179. ZHANG Z L, TANG X F, MENG J Y, et al. Preparation and characterization of diethylene glycol octadecyl ether methacrylate and its polymer[J]. Chemical Journal of Chinese Universities, 2014, 35(1):175-179(in Chinese). |
[17] | 张兴祥, 李树芹, 陈赛, 等. 聚二乙二醇十六烷基醚单丙烯酸酯/氧化石墨烯复合定型相变材料的制备及表征[J]. 天津工业大学学报, 2016, 35(2):1-6. ZHANG X X, LI S Q, CHEN S, et al. Preparation and characterization of poly(diethylene glycol hexadecyl ether acrylate)/graphene oxide composite shape-stabilized phase change materials[J]. Journal of Tianjin Polytechnic University, 2016, 35(2):1-6(in Chinese). |
[18] | LIU L T, KONG L, WANG H X, et al. Effect of graphene oxide nanoplatelets on the thermal characteristics and shape-stabilized performance of poly(styrene-co -maleic anhydride)-g -octadecanol comb-like polymeric phase change materials[J]. Solar Energy Materials and Solar Cells, 2016, 149:40-48. |
[19] | 王崇云, 王维, 冯利利, 等. 正二十烷与膨胀石墨共改性三水合醋酸钠相变材料储热性能[J]. 复合材料学报, 2014, 31(3):824-829. WANG C Y, WANG W, FENG L L, et al. Phase change property of sodium acetate trihydrate with n -eicosane and expanded graphite[J]. Acta Materiae Compositae Sinica, 2014, 31(3):824-829(in Chinese). |
[20] | BAETENS R, JELLE B P, GUSTAVSEN A. Phase change materials for building applications:A state of the art review[J]. Energy & Buildings, 2010, 42(9):1361-1368. |
[21] | WEI L, MA Y J, TANG X F, et al. Composition and characterization of thermoregulated fiber containing acrylic-based copolymer microencapsulated phase-change materials (micro PCMs)[J]. Industrial & Engineering Chemistry Research, 2014, 53(13):5413-5420. |
[22] | WU Q, ZHAO D, JIAO X, et al. Preparation, properties, and supercooling prevention of phase change material n-octadecane microcapsules with peppermint fragrance scent[J]. Industrial & Engineering Chemistry Research, 2015, 54(33):8130-8136. |
[23] | GAO X Y, HAN N, ZHANG X X, et al. Melt-processable acrylonitrile-methyl acrylate copolymers and melt-spun fibers containing micro PCMs[J]. Journal of Materials Science, 2009, 44(21):5877-5884. |
[24] | SHI H F, ZHAO Y, DONG X, et al. Frustrated crystallisation and hierarchical self-assembly behaviour of comb-like polymers[J]. Chemical Society Reviews, 2013, 42(5):2075-2099. |
[25] | CHEN C Z, LIU W M, WANG H W, et al. Synthesis and performances of novel solid-solid phase change materials with hexahydroxy compounds for thermal energy storage[J]. Applied Energy, 2015, 152:198-206. |
[26] | ZHANG H Z, WANG X D. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation[J]. Solar Energy Materials & Solar Cells, 2009, 93(8):1366-1376. |
[27] | SU J F, WANG L X, REN L. Synthesis of polyurethane microPCMs containing n -octadecane by interfacial polycondensation:Influence of styrene-maleic anhydride as a surfactant[J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects, 2007, 299(1-3):268-275. |