|
- 2018
基于激光扫描法辨识热环境下纤维/树脂基复合材料损耗因子
|
Abstract:
提出了激光扫描法辨识热环境下纤维/树脂基复合材料损耗因子。首先,以该类型复合材料薄板试件为例,基于复模量法对其在热环境下的振动响应进行了理论求解;然后,建立了复合材料薄板的激光扫描框架模型,并在分别通过激光扫描法和复模量法获得其振动响应的基础上,利用最小二乘法构造响应相对误差函数,进而辨识获得热环境下纤维/树脂基复合材料在纤维各个方向的损耗因子。接着,在明确了热环境下复合材料损耗因子辨识原理的基础上,总结并概括出一套合理、规范的辨识流程。最后,搭建了基于激光扫描热环境下复合材料薄板振动测试系统,并以TC500碳纤维/树脂基薄板为研究对象,在常温到300℃的高温环境下对其前4阶共振响应进行了实际测试,并通过第1阶共振响应数据对损耗因子进行辨识。结果表明,在温度从常温上升到300℃时,纤维/树脂基复合材料的损耗因子呈现不断增大的趋势。另外,还将辨识出的100℃下对应的材料损耗因子代入到理论模型中,计算得到了复合材料薄板试件在该温度下的第2、3、4阶共振响应的理论结果,通过与相同温度下实验测试获得的第2、3、4阶共振响应进行对比可知,两者的偏差在1.4%~13.8%之间,进而验证了所提出的辨识方法的有效性和实用性。 An identification method of loss factors of fiber/resin composite under thermal environment was presented. Firstly, the composite thin plate test-specimen of such material was taken as an example, and its vibration responses under thermal environment were theoretically solved based on the complex modulus method. Then, a laser scanning frame model of composite thin plate was established, and on the basis of the vibration responses obtained by laser scanning and complex modulus method, the relative error function of the responses was constructed by the least square method, so that the loss factors in the different fiber directions under thermal environment can be identified. Next, the identification principle of loss factors of fiber/resin composite under thermal environment was illustrated, and a reasonable and standard identification procedure was summarized. Finally, a vibration testing system of composite thin plate under thermal environment based on laser scanning technique was set up, and TC500 carbon fiber/resin composite thin plate was taken as a research object. The first 4 resonant responses were measured from the room temperature to 300℃, and consequently the loss factors were identified by the 1st resonant response data. It is found that when it raises from the room temperature to 300℃, the loss factors of fiber/resin composite material will increase gradually. In addition, the corresponding loss factor data at 100℃ was substituted into the theoretical model, and the 2nd, 3rd and 4th resonant response results were theoretically obtained at this temperature. By comparing these theoretical results with the experimental results, the relative errors are within the range of 1.4%-13.8%, so the effectiveness and practicability of such identification method have been verified. 国家自然科学基金(51505070);中央高校基本科研业务费专项资金(N150304011;N160313002);东北大学航空动力装备振动及控制教育部重点实验室研究基金(VCAME201603)
[1] | VINSON J R, SIERAKOWSKI R L. The behavior of structures composed of composite materials[M]. Heidelberg:Springer Science & Business Media, 2006. |
[2] | JONES R M. Mechanics of composite materials[M]. Washington:Scripta Book Company, 1975. |
[3] | 胡海峰, 张玉娣, 邹世钦, 等. SiC/SiC复合材料及其在航空发动机上的应用[J]. 航空制造技术, 2010(6):90-91. HU H F, ZHANG Y D, ZOU S Q, et al. SiC/SiC compo-sites and its application on aero-engine[J]. Aeronautical Manufacturing Technology, 2010(6):90-91(in Chinese). |
[4] | 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322. MA Limin, ZHANG Jiazhen, YUE Guangquan, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32(2):317-322(in Chinese). |
[5] | 梁军, 杜善义. 防热复合材料高温力学性能[J]. 复合材料学报, 2004, 21(1):73-77. LIANG Jun, DU Shanyi. Investigation of the thermo-mechanical properties of thermal protective composites under high temperature[J]. Acta Materiae Compositae Sinica, 2004, 21(1):73-77(in Chinese). |
[6] | MELO J D D, RADFORD D W. Time and temperature dependence of the viscoelastic propertiesof CFRP by dynamic mechanical analysis[J]. Composite Structures, 2005, 70(2):240-253. |
[7] | LAZAN B J. Damping of materials and members in structural mechanics[M]. Oxford:Pergamon Press, 1968. |
[8] | JEYARAJ P, GANESAN N, PADMANABHAN C. Vibration and acoustic response of a composite thin plate with inherent material damping in a thermal environment[J]. Journal of Sound and Vibration, 2009, 320(1):322-338. |
[9] | WHITNEY J M, ASHTON J E. Effect of environment on the elastic response of layered composite thin plates[J]. AIAA Journal, 1971, 9(9):1708-1713. |
[10] | YANG S, GIBSON R F, CROSBIE G M, et al. Dynamic mechanical properties of ceramics and ceramic composites at elevated temperatures[J]. Journal of Engineering for Gas Turbines and Power, 1997, 119(1):15-19. |
[11] | GIBSON R F. Modal vibration response measurements for characterization of composite materials and structures[J]. Composites Science and Technology, 2000, 60(15):2769-2780. |
[12] | SEFRANI Y, BERTHELOT J M. Temperature effect on the damping properties of unidirectional glass fibre composites[J]. Composites Part B:Engineering, 2006, 37(4-5):346-355. |
[13] | ZHANG X L, XU K, BAI Y H, et al. Thermal vibration characteristics of fiber-reinforced mullite sandwich structure with ceramic foams core[J]. Composite Structures, 2015, 131:99-106. |
[14] | WU D, WANG Y, SHANG L, et al. Thermo-mechanical properties of C/SiC composite structure under extremely high temperature environment up to 1500℃[J]. Composites Part B:Engineering, 2016, 90:424-431. |
[15] | ZHAO S G, WANG Y W, WU D F, et al. Experimental research on thermal-vibration for composite trilaminated wing structure[J]. Advanced Materials Research, 2015, 1061-1062:799-805. |
[16] | 杨和振, PARK Han-il, 李华军. 温度变化下复合材料层合板的试验模态分析[J]. 复合材料学报, 2008, 25(2):149-155. YANG H Z, PARK H, LI H J. Experimental modal analysis of the composite laminates with temperature variation[J]. Acta Materiae Compositae Sinica, 2008, 25(2):149-155(in Chinese). |
[17] | 张晓蕾. 陶瓷基防隔热结构高温环境振动特性实验研究及模型修正[D]. 哈尔滨:哈尔滨工业大学, 2015. ZHANG X L. Thermal vibration analysis and model updating of ceramic matrix thermal protection/insulation structure[D]. Harbin:Harbin Institute of Technology, 2015(in Chinese). |
[18] | 薛鹏程, 李晖, 常永乐, 等. 悬臂边界下纤维增强复合材料薄板固有频率计算及验证[J]. 航空动力学报, 2016, 31(7):1754-1760. XUE P C, LI H, CHANG Y L, et al. Natural frequency calculation and validation of fiber reinforced composite thin plate under cantilever boundary[J]. Journal of Aerospace Power, 2016, 31(7):1754-1760(in Chinese). |
[19] | 杨自春. 受热复合材料层合板的非线性热振动Part Ⅱ:实验研究[J]. 复合材料学报, 2000, 17(2):119-122. YANG Z C. Nonlinear thermal vibration of composite laminated plates-Part Ⅱ:Test[J]. Acta Materiae Compositae Sinica, 2000, 17(2):119-122(in Chinese). |
[20] | BERTHELOT J M. Damping analysis of laminated beams and plates using the Ritz method[J]. Composite Structures, 2006, 74(2):186-201. |