|
- 2018
GFRP管-铝合金管纤维缠绕齿连接接头拉伸试验
|
Abstract:
为了实现复合材料-铝合金连接,提出了一种新型GFRP管-铝合金管纤维缠绕齿连接接头,对2组GFRP管-铝合金管缠绕齿连接接头试件进行了拉伸试验,观察了试件的受力过程和破坏形态,获得了荷载-位移曲线和荷载-轴向应变曲线,同时利用有限元模型分析了GFRP管-铝合金管缠绕齿连接接头拉伸作用下的破坏机制。结果表明:接头试件的破坏模式为GFRP管齿的逐齿剪切破坏,破坏过程表现出延性特征并产生较大的轴向位移,试件对应GFRP管的平均极限拉应力为213.22 MPa;接头依靠齿的层间抗剪传递轴力,GFRP管齿是接头受力的薄弱部位,且各齿承受不均的荷载分配;齿的破坏始于齿根的角点处。 In order to obtain a new way of connection between composite material and aluminum-alloy, the tooth connection between GFRP tube and aluminum-alloy tube with filament winding was proposed. The tensile experiments on two-group specimens of the tooth connect between GFRP tube and aluminum alloy tubes were conducted. The failure model, load-displacement relationship and load-axial strain relationship were documented during the loading process. The failure mechanism of the tooth connection between GFRP tube and aluminum-alloy tube subject to tension was numerically explored. The results show that the failure model for specimen of the connection is one-by-one shear failure of GFRP tube teeth, the failure process appears the ductility feature and larger axial displacement, and the average ultimate tensile stress of GFRP tube is 213.22 MPa; the connection carries the axial force through interlaminar shear of the teeth, the teeth of GFRP tube is the weak part when the connection was stressed and different teeth endure different load distribution; the failure of teeth originate from the angular point of the root of teeth. 国家重点研发计划(2017YFC0703008);国家自然科学基金(51778620);中国博士后科学基金(2017M611657)
[1] | 冯鹏, 田野, 覃兆平. 纤维增强复合材料拉挤型材桁架桥静动力性能研究[J]. 工业建筑, 2013, 43(6):36-41. FENG P, TIAN Y, TAN Z P. Static and dynamic behavior of a truss bridge made of FRP pultrude profiles[J]. Industrial Construction, 2013, 43(6):36-41(in Chinese). |
[2] | KOSTOPOULOS V, MARKOPOULOS Y P, VLACHOS D E, et al. Design and construction of a vehicular bridge made of glass/polyester pultruded box beams[J]. Plastics, Rubber and Composites, 2013, 34(4):201-207. |
[3] | PFEIL M S, TEIXEIRA A M A J, BATTISTA R C. Experimental tests on GFRP truss modules for dismountable bridges[J]. Composite Structures, 2009, 89(1):70-76. |
[4] | TEIXEIRA A M A J, PFEIL M S, BATTISTA R C. Structural evaluation of a GFRP truss girder for a deployable bridge[J]. Composite Structures, 2014, 110(4):29-38. |
[5] | ZHANG D D, ZHAO Q L, HUANG Y X, et al. Flexural properties of a lightweight hybrid FRP-aluminum modular space truss bridge system[J]. Composite Structures, 2014, 108(1):600-615. |
[6] | HAGIO H, UTSUMI Y, KIMURA K, et al. Development of space truss structure using glass fiber reinforced plastics[C]. Advanced Materials for Construction of Bridges, Buildings, and Other Structures Ⅲ. Davos:ECI Digital Archives, 2003. |
[7] | 赵馨怡, 黄盛楠, 冯鹏, 等. 复合材料胶栓混合连接机理的试验研究[J]. 工程力学, 2015, 32(s1):314-321. ZHAO X Y, HUANG S N, FENG P, et al. Experimental research on hybrid connecting method for FRP constructional elements[J]. Engineering Mechanics, 2015, 32(s1):314-321(in Chinese). |
[8] | LI F, ZHAO Q L, GAO Y F, et al. A prediction method of the failure load and failure mode for composite pre-tightened tooth connections based on the characteristic lengths[J]. Composite Structures, 2016, 154:684-693. |
[9] | LIU P F, ZHAO Q L, ZHANG D D, et al. Experimental investigation of a novel connection for pultruded composites:Hybrid bolt-tooth connection[J]. Journal of Reinforced Plastics & Composites, 2015, 34(17):1359-1377. |
[10] | YANG X, BAI Y, DING F. Structural performance of a large-scale space frame assembled using pultruded GFRP composites[J]. Composite Structures, 2015, 133:986-996. |
[11] | 赵丽滨, 刘丰睿, 黄伟, 等. 复合材料螺栓连接失效分析研究进展[J]. 强度与环境, 2017, 44(3):1-11. ZHAO L B, LIU F R, HUANG W, et al. Advances in failure analysis methods of bolted composite joints[J]. Structure & Environment Engineering, 2017, 44(3):1-11(in Chinese). |
[12] | 赵丽滨, 山美娟, 彭雷, 等. 制造公差对复合材料螺栓连接结构强度分散性的影响[J]. 复合材料学报, 2015, 32(4):1092-1098. ZHAO L B, SHAN M J, PENG L, et al. Effect of manufacturing tolerance on the strength scatter of composite bolted joints[J]. Acta Materiae Compositae Sinica, 2015, 32(4):1092-1098(in Chinese). |
[13] | DENG A Z, ZHAO Q L, LI F, et al. Research on bearing capacity of single tooth to composite pre-tightened teeth connection[J]. Journal of Reinforced Plastics and Composites, 2013, 32(21):1603-1613. |
[14] | KELLER T. Recent all-composite and hybrid fibre-reinforced polymer bridges and buildings[J]. Progress in Structural Engineering & Materials, 2001, 3(2):132-140. |
[15] | 赵丽滨, 徐吉峰. 先进复合材料连接结构分析方法[M]. 北京:北京航空航天大学出版社, 2015. ZHAO L B, XU J F. Analysis method on advanced compo-site material connection[M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 2015(in Chinese). |
[16] | 谈超, 李玉龙, 郭亚洲. 复合材料夹芯管胶接连接结构力学特性分析[J]. 复合材料学报, 2014, 31(6):1532-1542. TAN C, LI Y L, GUO Y Z. Mechanical property analysis of composite adhesively bonded sandwich pipe joints[J]. Acta Materiae Compositae Sinica, 2014, 31(6):1532-1542(in Chinese). |
[17] | 杨银环, 周振功, 郭颖, 等. 缺陷对单搭胶接接头力学性能的影响[J]. 复合材料学报, 2012, 29(5):157-163. YANG Y H, ZHOU Z G, GUO Y, et al. Effect of defects in the adhesive layer on strength of adhesively bonded single-lap composites joints[J]. Acta Materiae Compositae Sinica, 2012, 29(5):157-163(in Chinese). |