全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

纳米Al2O3-碳纤维多尺度增强聚酰胺基复合材料的制备及力学性能
Preparation and mechanical properties of nano Al2O3-carbon fiber multi-scale reinforced polyamide composites

DOI: 10.13801/j.cnki.fhclxb.20170517.003

Keywords: 多尺度,碳纤维,纳米Al2O3,聚酰胺,复合材料,性能
multi-scale
,carbon fiber,nano Al2O3,polyamide,composite,property

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用叠层模压法制备了纳米Al2O3-碳纤维织物多尺度增强聚酰胺基(nano Al2O3-CFF/PA6)复合材料层压板。借助场发射扫描电子显微镜(FESEM)、同步热分析仪(TGA/DSC)和FTIR,研究了模压温度、压力和纳米Al2O3加入量等因素对nano Al2O3-CFF/PA6复合材料力学性能的影响。研究表明:在模压温度为230℃、模压压力为3 MPa和保压时间为15 min时,CFF/PA6层压板的弯曲强度为250.3 MPa,层间剪切强度为87.6 MPa,平行层厚方向的冲击强度为41.2 MPa,垂直层厚方向为9.6 MPa。当基体中的Al2O3含量达到6wt%时,nano Al2O3-CFF/PA6层压板的弯曲强度为387.6 MPa,层间剪切强度为35.7 MPa,平行和垂直层厚方向的冲击强度分别为80.3 MPa和25.6 MPa。 Laminated film compression-molding was used to fabricate nano Al2O3-carbon fiber multi-scale reinforced PA6 matrix (nano Al2O3-CFF/PA6) composite laminates. The effect of molding temperature, compression pressure and nano Al2O3 content on the properties of nano Al2O3-CFF/PA6 laminates were investigated by FESEM, thermogravimetric analysis/differential scanning calorimetry simultaneous thermal analyzer(TGA/DSC) and FTIR. The results show that the flexural strength, interlaminar shear strength, and parallel/vertical impact strength of the CFF/PA6 laminates reach 250.3 MPa, 87.6 MPa, 41.2 MPa and 9.6 MPa while they are fabricated at 230℃, 3 MPa holding 15 min. When the content of nano Al2O3 in the matrix reaches to 6wt%, the corresponding mechanical strength of nano Al2O3-CFF/PA6 laminated composite are 387.6 MPa, 35.7 MPa, 80.3 MPa and 25.6 MPa, respectively.

References

[1]  BELINGARDI G, BEYENE A T, KORICHO E G, et al. Alternative lightweight materials and component manufacturing technologies for vehicle frontal bumper beam[J]. Composite Structures, 2015, 120:483-495.
[2]  HANSEN M O L, MSDSEN H A. Review paper on wind turbine aerodynamics[J]. Journal of Fluids Engineering, 2011, 133(11):114001.
[3]  FAN Z, GUI L, RUIYI S U, et al. Research and development of automotive lightweight technology[J]. Journal of Automotive Safety & Energy, 2014, 5(1):1-16.
[4]  VIEILLE B, TALEB L. About the influence of temperature and matrix ductility on the behavior of carbon woven-ply PPS or epoxy laminates:Notched and unnotched laminates[J]. Composites Science & Technology, 2011, 71(7):998-1007.
[5]  邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338. XING L Y, BAO J W, LI S M, et al. Development status and facing challenge advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(7):1327-1338(in Chinese).
[6]  徐丽, 张幸红, 韩杰才. 航空航天复合材料无损检测研究现状[J]. 材料导报, 2005, 19(8):79-82. XU L, ZHANG X H, HAN J C. Review of NDE of composite materials in aerospace fields[J]. Materials Review, 2005, 19(8):79-82(in Chinese).
[7]  张立功, 张佐光. 先进复合材料中主要缺陷分析[J]. 玻璃钢/复合材料, 2001(2):42-45. ZHANG L G, ZHANG Z G. Analysis of defects in advanced composites[J]. Fiber Reinforced Plastics/Composites, 2001(2):42-45(in Chinese).
[8]  危荃, 金翠娥, 周建平, 等. 空气耦合超声技术在航空航天复合材料无损检测中的应用[J]. 无损检测, 2016, 38(8):6-11. WEI Q, JIN C E, ZHOU J P, et al. Application of air-coupled ultrasonic technology for nondestructive testing of aerospace composites[J]. Materials and Testing, 2016, 38(8):6-11(in Chinese).
[9]  邱求元, 邢素丽, 肖加余, 等. 碳纤维增强树脂基复合材料界面优化研究进展[J]. 材料导报, 2006, 20(s2):436-439. QIU Q Y, XING S L, XIAO J Y, et al. Research on the interface treatment methods of CFRP[J]. Materials Review, 2006, 20(s2):436-439(in Chinese).
[10]  王超. 碳纳米管/碳纤维多尺度复合材料界面增强机理研究[D]. 哈尔滨:哈尔滨工业大学, 2013. WANG C. Interfacial enhancement mechanisms of carbon nanotube/carbon fiber multi-scale composites[D]. Harbin:Harbin Institute of Technology, 2013(in Chinese).
[11]  郑林宝, 王延相, 陈纪强, 等. CF-CNTs多尺度增强体的制备及CF-CNTs/环氧树脂复合材料力学性能[J]. 复合材料学报, 2017, 34(11):2428-2436. ZHENG L B, WANG Y X, CHEN J Q, at al. Preparation of CF-CNTs multi-scale reinforcement and mechanical properties of CF-CNTs/epoxy composites[J]. Acta Materiae Compositae Sinica, 2017, 34(11):2428-2436(in Chinese).
[12]  BEKYAROVRA E, THOSTENSON E, YU A, et al. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites[J]. Langmuir, 2007, 23(7):3970-3974.
[13]  MEI L, HE X, LI Y, et al. Grafting carbon nanotubes onto carbon fiber by use of dendrimers[J]. Materials Letters, 2010, 64(22):2505-2508.
[14]  DEY N K, KIM M J, KIM K D, et al. Adsorption and photocatalytic degradation of methylene blue over TiO2, films on carbon fiber prepared by atomic layer deposition[J]. Journal of Molecular Catalysis A:Chemical, 2011, 337(1-2):33-38.
[15]  刘伟. 纳米粒子/碳纤维增强聚酰亚胺复合材料制备及性能研究[D]. 哈尔滨:哈尔滨工业大学, 2013. LIU W. Research on the preparation and the properties of nanoparticle/carbon fiber-reinforced polyimide composites[D]. Harbin:Harbin Institute of Technology, 2013(in Chinese).
[16]  赵永华, 马兆昆, 宋怀河, 等. 碳纤维/氧化石墨烯多尺度增强体的制备与表征[J]. 材料研究学报, 2016, 30(3):229-234. ZHAO Y H, MA Z K, SONG H H, et al. Synthesis and characterization of carbon fibers multi-scale reinforcement with grafted graphene oxide[J]. Chinese Journal of Materials Research, 2016, 30(3):229-234(in Chinese).
[17]  THOMASON J L. The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene:5. Injection moulded long and short fibre PP[J]. Composites Part A:Applied Science & Manufacturing, 2002, 33(12):1641-1652.
[18]  郭书良, 段跃新, 肇研, 等. 连续玻璃纤维增强热塑/热固性复合材料力学性能研究[J]. 玻璃钢/复合材料, 2009(5):42-45. GUO S L, DUAN Y X, ZHAO Y, et al. Research on mechanical properties of continuous glass fiber reinforced thermoplastic/thermosetting composite[J]. Fiber Reinforced Plastics/Composites, 2009(5):42-45(in Chinese).
[19]  陈平, 陆春, 于祺, 等. 纤维增强热塑性树脂基复合材料界面研究进展[J]. 材料科学与工艺, 2007, 15(5):665-669. CHEN P, LU C, YU Q, et al. Advance in study of interface of fiber reinforced thermoplastic composite[J]. Materials Science and Technology, 2007, 15(5):665-669(in Chinese).
[20]  姜正飞, 朱姝, 孙泽玉, 等. 纺织结构碳纤维增强聚苯硫醚基复合材料的制备与力学性能[J]. 复合材料学报, 2013, 30(s1):112-117. JIANG Z F, ZHU S, SUN Z Y, et al. Preparation and mechanical properties of cabron fiber fabric reinforced polyphenylene sulfide composite[J]. Acta Materiae Compositae Sinica, 2013, 30(s1):112-117(in Chinese).
[21]  American Society for Testing and Material. Standard test method for flexural properties of polymer matrix composite material:ASTM D7264-07[S]. Pennsylvania, United States:ASTM International, 2007.
[22]  American Society for Testing and Material. Standard test method for short-beam strength of polymer matrix composite materials and their laminates:ASTM D2344-16[S]. Pennsylvania, United States:ASTM International, 2016.
[23]  American Society for Testing and Material. Standard test methods for determining the lzod pendulum impact resistance of plastics:ASTM D256-10[S]. Pennsylvania, United States:ASTM International, 2010.
[24]  张金柱, 汪信, 陆路德, 等. 纳米无机粒子对塑料增强增韧的"裂缝与银纹相互转化"机理[J]. 工程塑料应用, 2003, 31(1):20-22. ZHANG J Z, WANG X, LU LD, et al. Mutual transfer mechanism of crack and craze of toughening and reforceing of plastics modified by inorganic nanoparticles[J]. Engineering Plastics Application, 2003, 31(1):20-22(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133