|
- 2018
考虑制造因素的变刚度层合板的抗屈曲铺层优化设计
|
Abstract:
与常规层合板相比,变刚度层合板的制造、有限元建模分析和铺层设计有其特殊之处。首先对设计时需考虑的制造因素进行了归纳,提出了变刚度层合板的铺层设计要求。然后给出了变刚度层合板的理想模型和考虑丝束宽度模型的建模方法。基于理想模型对ABAQUS的前处理模块进行二次开发,利用编制的参数化建模程序分析了不同铺放角的变刚度层合板的屈曲性能,并讨论了最小曲率半径对铺层的限制和变刚度设计提高屈曲载荷的机制。基于变刚度层合板的抗屈曲机制建立了一种铺层优化设计方法,使用遗传算法经两步优化得到最优铺层。对最优铺层建立考虑丝束宽度的模型以研究丝束宽度和铺层偏移对变刚度层合板抗屈曲铺层优化结果的影响。研究表明,在变刚度层合板的抗屈曲铺层优化中使用简化的理想模型通常来说是可行的。在考虑制造因素的情况下,优化后的变刚度层合板较常规层合板屈曲载荷有显著提高。 There are some special issues in manufacturing, modeling and layup optimization for maximum buckling load of variable-stiffness composite laminates compared with traditional ones. Firstly, the manufacturing factors which need to be considered when designing variable-stiffness laminates were summarized and the design requirements for buckling were proposed. Secondly, two modelling methods were developed, namely the ideal model and the model considering the tow width. An automatic parametric modeling program was written based on the secondary development of ABAQUS. Buckling analysis was carried on a series of variable-stiffness plates with different ply angles, and the restriction of the minimum curvature radius was discussed and the reasons for the increase in the buckling performance of variable-stiffness laminates were explained. Based on the mechanism of increasing buckling load, a layup optimization method to maximize the buckling load of variable-stiffness laminates was created and the optimum layup was obtained using a two-step genetic algorithm. Finally, the tow width and ply staggering effects on the layup optimization for maximum buckling load were investigated using the model considering the tow width. The result demonstrates that it is generally feasible to apply the simplified ideal model when carrying out the layup optimization for maximum buckling load of variable-stiffness laminates. Considering the manufacturing factors, the optimum variable-stiffness plate increases the buckling load dramatically compared with the traditional one. 江苏高校优势学科建设工程项目;国家自然科学基金(11572152)
[1] | LANGLEY T. Finite element modeling of tow-placed variable-stiffness composite laminates[D]. Blacksburg:Virginia Tech, 1999. |
[2] | KIM B C, HAZRA K, WEAVER P, et al. Limitations of fibre placement techniques for variable angle tow composites and their process-induced defects[C]. 18th International Conference on Composite Materials, 2011. |
[3] | ALHAJAHMAD A, ABDALLA M, GVRDAL Z. Optimal Design of tow-placed pressurized fuselage panels for maximum strength with buckling considerations[J]. AIAA Journal, 2008, 47:775-782. |
[4] | TATTING B F, GVRDAL Z. Design and manufacture of elastically tailored tow placed plates[R]. NASA/CR-2002-211919. 2002. |
[5] | JEGLEY D C, TATTING B F, GVRDAL Z. Optimization of elastically tailored tow-placed plates with holes[C]. 44th AIAA Structures, Structural Dynamics, and Materials Conference, 2003. |
[6] | LOPES C S, CAMANHO P P, GVRDAL Z, et al. Progressive failure analysis of tow-placed, variable-stiffness composite panels[J]. International Journal of Solids and Structures, 2007, 44:8493-8516. |
[7] | SETOODEH S, ABDALLA M M, GVRDAL Z. Design of variable-stiffness laminates using lamination parameters[J]. Composites Part B:Engineering, 2006, 37:301-309. |
[8] | 马永前, 张淑杰, 许震宇. 纤维曲线铺放的变刚度复合材料层合板的屈曲[J]. 玻璃钢/复合材料, 2009, 5:31-35. MA Yongqian, ZHANG Shujie, XU Zhenyu. Buckling of variable-stiffness composite panels with curvilinear format[J]. Fiber Reinforced Plastics/Composites, 2009, 5:31-35(in Chinese). |
[9] | 杨竣博, 宋笔锋, 钟小平. 变刚度层合板屈曲性能的有限元分析[J]. 复合材料学报, 2014, 31(4):991-997. YANG Junbo, SONG Bifeng, ZHONG Xiaoping. Finite element analysis on the buckling property of variable-stiffness laminates[J]. Acta Materiae Compositae Sinica, 2014, 31(4):991-997(in Chinese). |
[10] | 刘润兵. 纤维增强复合材料变角度层合板的力学特性研究[D]. 哈尔滨:哈尔滨工业大学, 2012. LIU Runbing. Research on the mechanical performance of fiber reinforced composite variable angle laminates[D]. Harbin:Harbin Institute of Technology, 2012(in Chinese). |
[11] | 中国航空研究院. 复合材料结构稳定性分析指南[M]. 北京:航空工业出版社, 2002. Chinese Institute of Aeronautics. Analysis guide for compo-site structural stability[M]. Beijing:Aviation Industry Press, 2002(in Chinese). |
[12] | 中国航空研究院. 复合材料结构设计手册[M]. 北京:航空工业出版社, 2001. Chinese Institute of Aeronautics. Design handbook of composites structures[M]. Beijing:Aviation Industry Press, 2001(in Chinese). |
[13] | 肖军, 李勇, 李建龙. 自动铺放技术在大型飞机复合材料结构件制造中的应用[J]. 航空制造技术, 2008, 01:50-53. XIAO Jun, LI Yong, LI Jianlong. Application of automatic fiber placement in manufacture of composite structures in large aircraft[J]. Aeronautical Manufacturing Technology, 2008, 01:50-53(in Chinese). |
[14] | GVRDAL Z, OLMEDO R. In-plane response of laminates with spatially varying fiber orientations-variable stiffness concept[J]. AIAA Journal, 1993, (31):751-758. |
[15] | 秦永利, 祝颖丹, 范欣愉. 纤维曲线铺放制备变刚度复合材料层合板的研究进展[J]. 玻璃钢/复合材料, 2012, 29(1):61-66. QIN Yongli, ZHU Yingdan, FAN Xinyu. Development on variable-stiffness composite laminates[J]. Fiber Reinforced Plastics/Composites, 2012, 29(1):61-66(in Chinese). |
[16] | 杨竣博, 宋笔锋, 钟小平. 变刚度层合板屈曲性能的参数化研究[J]. 复合材料学报, 2015, 32(4):1145-1152. YANG Junbo, SONG Bifeng, ZHONG Xiaoping. Parametric study on buckling property of variable-stiffness laminates[J]. Acta Materiae Compositae Sinica, 2015, 32(4):1145-1152(in Chinese). |
[17] | LOZANO G G, TIWARI A, TURNER C, et al. A review on design for manufacture of variable stiffness composite laminates[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2015, 230:981-992. |
[18] | LOPES C S. Damage and failure of non-conventional compo-site laminates[D]. Delft:Delft University of Technology, 2009. |
[19] | BLOM A W. Structural performance of fiber-placed, variable-stiffness composite conical and cylindrical shells[D]. Delft:Delft University of Technology, 2010. |
[20] | GVRDAL Z, TATTING B F, WU K C. Tow-placement technology and fabrication issues for laminated composite structures[C]. 46th AIAA Structures, Structural Dynamics and Materials Conference, 2005. |