|
- 2018
任意负泊松比超材料结构设计的功能基元拓扑优化法
|
Abstract:
基于拓扑优化方法,提出了设计具有任意负泊松比超材料及结构的功能基元拓扑优化法。针对功能基元的不同初始拓扑基结构,包括矩形和三角形初始拓扑基结构,以指定的负泊松比值作为约束条件,以功能基元柔顺度最大化为目标函数,建立了任意负泊松比超材料拓扑优化模型并求解。提取拓扑优化得到的功能基元最优构型,经周期性分布从而形成负泊松比结构。建立优化得到的超材料结构有限元模型,验算了功能基元的泊松比,计算分析了该超材料试件的静、动力学特性。结果表明,该负泊松比效应超材料试件具有较好的承载能力,且在中低频段有较好的减振效果。 Based on the topology optimization method, the functional element topology optimization method was proposed to design a metamaterial and a functional element's structure with arbitrary negative Poisson's ratio. For different initial topological substrate structures of the functional element, including the rectangular and triangular initial topological substrate structure, with the specified negative Poisson's ratio as the constraint condition, the compliance of functional element was maximized as the objective function, and the topology optimization model with arbitrary negative Poisson's ratio was established and solved. The functional element was extracted by the topology optimal results, and the functional elements were periodically distributed to form a negative Poisson's structure. Then, the finite element model of the optimized metamaterial structure was established, and the Poisson's ratio of the functional element was calculated by the formula. Finally, the static and dynamic characteristics of the metamaterials were calculated and analyzed. The results demonstrate that this negative Poisson's ratio effect metamaterial specimen has good bearing capacity and has better vibration reduction performance in the middle and low frequency range. 国家自然科学基金(51479115)
[1] | RUZZENE M, SCARPA F. Directional and band-gap behavior of periodic auxetic lattices[J]. Physica Status Solidi, 2005, 242(3):665-680. |
[2] | LUO D, CHU W, WU X, et al. Micromechanical analysis of dynamic behavior of conventional and negative poisson's ratio foams[J]. Journal of Engineering Materials & Technology, 1996, 118(3):285-288. |
[3] | GRIMA J N, MANICARO E, ATTARD D. Auxetic behaviour from connected different-sized squares and rectangles[J]. Proceedings Mathematical Physical and Engineering Sciences, 2011, 467(2126):439-458. |
[4] | WAN H, OHTAKI H, KOTOSAKA S, et al. A study of negative poisson's ratios in auxetic honeycombs based on a large deflection model[J]. European Journal of Mechanics A/Solids, 2004, 23(1):95-106. |
[5] | GRIMA J N, GATT R, ELLUL B, et al. Auxetic behaviour in non-crystalline materials having star or triangular shaped perforations[J]. Journal of Non-Crystalline Solids, 2010, 356(37-40):1980-1987. |
[6] | GIBSON L J, ASHBY M F, Cellular solids:Structure and properties[M]. London:Pergamon Press, 1988. |
[7] | CARNEIRO V H, PUGA H, MEIRELES J. Analysis of the geometrical dependence of auxetic behavior in reentrant structures by finite elements[J]. Acta Mechanica Sinica, 2016, 32(2):295-300. |
[8] | WAN H, OHTAKI H, KOTOSAKA S, et al. A study of negative poisson's ratios in auxetic honeycombs based on a large deflection model[J]. European Journal of Mechanics A:Solids, 2004, 23(1):95-106. |
[9] | 管国阳, 矫桂琼, 张增光. 2D-C/SiC复合材料的宏观拉压特性和失效模式[J]. 复合材料学报, 2005, 22(4):81-85. GUAN Guoyang, JIAO Guiqiong, ZHANG Zengguang. Uniaxial macro-mechanical property and failure mode of a 2D-moven C/SiC composite[J]. Acta Materiae Compositae Sinica, 2005, 22(4):81-85(in Chinese). |
[10] | CARNEIRO V H, PUGA H, MEIRELES J. Analysis of the geometrical dependence of auxetic behavior in reentrant structures by finite elements[J]. Acta Mechanica Sinica, 2016, 32(2):1-6. |
[11] | ELIPE J C á, LANTADA A D. Comparative study of auxe-tic geometries by means of computer-aided design and engineering[J]. Smart Materials and Structures, 2012, 21(10):105004-105015. |
[12] | 杨智春, 邓庆田. 负泊松比材料与结构的力学性能研究及应用[J]. 力学进展, 2011, 41(3):335-350. YANG Zhichun, DENG Qingtian. Mechanical property and application of materials and structures with negative poisson's ratio[J]. Advances in Mechanics, 2011, 41(3):335-350(in Chinese). |
[13] | SIGMUND O. Materials with prescribed constitutive parameters:An inverse homogenization problem[J]. International Journal of Solids and Structures, 1994, 31(17):2313-2329. |
[14] | LIU L, YAN J, CHENG G. Optimum structure with homogeneous optimum truss-like material[J]. Computers & Structures, 2008, 86(13):1417-1425. |
[15] | ZHANG X W, YANG D Q. Numerical and experimental studies of a light-weight auxetic cellular vibration isolation base[J]. Shock and Vibration, 2016(9):1-16. |
[16] | ZHANG X, YANG D. Mechanical properties of auxetic cellular material consisting of re-entrant hexagonal honeycombs[J]. Materials, 2016, 9(11):900. |
[17] | 张卫红, 孙士平. 多孔材料/结构尺度关联的一体化拓扑优化技术[J]. 力学学报, 2006, 38(4):522-529. ZHANG Weihong, SUN Shiping. Integrated design of porous materials and structures with scale-coupled effect[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4):522-529(in Chinese). |
[18] | NIU B, YAN J, CHENG G. Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency[J]. Structural and Multidisciplinary Optimization, 2009, 39(2):115-132. |
[19] | 阎军, 程耿东, 刘岭. 基于均匀材料微结构模型的热弹性结构与材料并发优化[J]. 计算力学学报, 2009, 26(1):1-7. YAN Jun, CHENG Gengdong, LIU Ling. A homogeneous optimum material based model for concurrent optimization of thermoelastic structures and materials[J]. Chinese Journal of Computational Mechanics, 2009, 26(1):1-7(in Chinese). |
[20] | 李汪颖, 杨雄伟, 李跃明. 多孔材料夹层结构声辐射特性的两尺度拓扑优化设计[J]. 航空学报, 2016, 37(4):1196-1206. LI Wangying, YANG Xiongwei, LI Yueming. Two-scale topology optimization design of sandwich structures of a porous core with respect to sound radiation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1196-1206(in Chinese). |
[21] | 张新春, 刘颖, 李娜. 具有负泊松比效应蜂窝材料的面内冲击动力学性能[J]. 爆炸与冲击, 2012, 32(5):475-482. ZHANG Xinchun, LIU Ying, LI Na. In-plane dynamic crushing of honeycombs with negative poisson's ratio effects[J]. Explosion and Shock Waves, 2012, 32(5):475-482(in Chinese). |
[22] | H?NIG A, STRONGE W J. In-plane dynamic crushing of honeycomb. Part I:Crush band initiation and wave trapping[J]. International Journal of Mechanical Sciences, 2002, 44(8):1665-1696. |
[23] | 张梗林, 杨德庆. 船舶宏观负泊松比蜂窝夹芯隔振器优化设计[J]. 振动与冲击, 2013, 32(22):68-72. ZHANG Genglin, YANG Deqing. Optimization design of an auxetic honeycomb isolator in a ship[J]. Journal of Vibration and Shock, 2013, 32(22):68-72(in Chinese). |
[24] | 张相闻, 杨德庆. 船用新型抗冲击隔振蜂窝基座[J]. 振动与冲击, 2015, 34(10):40-45. ZHANG Xiangwen, YANG Deqing. A novel marine impact resistance and vibration isolation cellular base[J]. Journal of Vibration and Shock, 2015, 34(10):40-45(in Chinese). |
[25] | 阎军, 邓佳东, 程耿东. 基于柔顺性与热变形双目标的多孔材料与结构几何多尺度优化设计[J]. 固体力学学报, 2011, 32(2):119-132. YAN Jun, DENG Jiadong, CHENG Gengdong. Multi geometrical scale optimization for porous structure and material with muti-objective of structural compliance and thermal deformation[J]. Chinese Journal of Solid Mechanics, 2011, 32(2):119-132(in Chinese). |
[26] | WANG B, CHENG G D. Design of cellular structures for optimum efficiency of heat dissipation[J]. Structural and Multidisciplinary Optimization, 2005, 30(6):447-458. |
[27] | 卢子兴, 赵亚斌. 一种有负泊松比效应的二维多胞材料力学模型[J]. 北京航空航天大学学报, 2006, 32(5):594-597. LU Zixing, ZHAO Yabin. Mechanical model of two-dimensional cellular materials with negative poisson's ratio[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(5):594-597(in Chinese). |