|
- 2015
拉伸条件下液态Sn/熔融聚乙烯复合体系中Sn的纤维化及其机制
|
Abstract:
[1] | Boudenne A, Ibos L, Fois M, et al. Electrical and thermal behavior of polypropylene filled with copper particles[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36(11): 1545-1554. |
[2] | Mamunya Y P, Davydenko V V, Pissis P, et al. Electrical and thermal conductivity of polymers filled with metal powders [J]. European Polymer Journal, 2002, 38(9): 1887-1897. |
[3] | Feller J F, Roth S, Bourmaud A. Conductive polymer composites: Electrical, thermal, and rheological study of injected isotactic poly(propylene)/long stainless-steel fibers for electromagnetic interferences shielding[J]. Journal of Applied Polymer Science, 2006, 100(4): 3280-3287. |
[4] | Karttunen M, Ruuskanen P. The microstructure and electrical properties of mechanically-alloyed copper-polymer composites[J]. Materials Science Forum, 1998, 269-272: 849- 852. |
[5] | Zhang X, Pan Y, Cheng J. The influence of low-melting-point alloy on the rheological properties of a polystyrene melt[J]. Journal of Materials Science, 2000, 35(18): 4573-4581. |
[6] | Xiong C X, Wen D J. Study on polypropylene-tin composites[J]. Acta Materiae Compositae Sinica, 1999, 16(3): 40-45 (in Chinese). 熊传溪, 闻荻江. 聚丙烯-锡复合材料的研究[J]. 复合材料学报, 1999, 16(3): 40-45. |
[7] | Zhang G Y, Liu T, Liu X B, et al. The processing behavior of liquid Sn/molten polyethylene during internal mixing[J]. International Polymer Processing, 2014, 29(2): 175-183. |
[8] | Kalyon D M, Birinci E, Yazici R. Electrical properties of composites as affected by the degree of mixedness of the conductive filler in the polymer matrix[J]. Polymer Engineering and Science, 2002, 42(7): 1609-1617. |
[9] | Halit S G, Thomas J F, Kalyon D M. Effects of particle shape and size distributions on the electrical and magnetic properties of nickel/polyethylene composites[J]. Journal of Applied Polymer Science, 1993, 50(11): 1891-1901. |
[10] | Bishay I K, Abd-El-Messieh S L, Mansour S H. Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminum powder[J]. Materials and Design, 2011, 32(1): 62-68. |
[11] | Lu X, Xu G. Thermally conductive polymer composites for electronic packaging[J]. Journal of Applied Polymer Science, 1997, 65(13): 2733-2738. |
[12] | Sun J S, Gokturk H S, Kalyon D M. Volume and surface resistivity of low-density polyethylene filled with stainless steel fibres[J]. Journal of Materials Science, 1993, 28(2): 364-366. |
[13] | Panwar V, Sachdev V K, Mehra R M. Insulator conductor transition in low-density polyethylene-graphite composites[J]. European Polymer Journal, 2007, 43(2): 573-585. |
[14] | Zhang L, Zhu J, Zhou W. Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials[J]. Energy, 2012, 39(1): 294-302. |
[15] | Han M S, Lee Y K, Kim W N. Effect of multi-walled carbon nanotube dispersion on the electrical, morphological and rheological properties of polycarbonate/multi-walled carbon nanotube composites[J]. Macromolecular Research, 2009, 17(11): 863-869. |
[16] | Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review[J]. Progress in Polymer Science, 2011, 36(7): 914-944. |
[17] | Richard T F, Vijay W, Kevin E H, et al. Conductive polymer composite materials and their utility in electromagnetic shielding applications[J]. Journal of Applied Polymer Science, 2008, 107(4): 2558-2566. |
[18] | Weidenfeller B, Hofer M, Schilling F R. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(4): 423-429. |
[19] | Hsiao M C. Effect of graphite size and carbon nanotubes content on flowability of bulk-molding compound and formability of the composite bipolar plate for fuel cell[J]. Journal of Power Source, 2010, 195(17): 5645-5650. |