全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

石墨烯/铜复合材料剪切性能的分子动力学模拟
Molecular dynamics simulations of the shear mechanical properties of graphene/copper composites

DOI: 10.13801/j.cnki.fhclxb.20170504.001

Keywords: 石墨烯/铜复合材料,分子动力学,剪切,缺陷,位错
graphene/copper composites
,molecular dynamics,shear,defect,dislocation

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用分子动力学方法系统地研究了石墨烯/铜复合材料的剪切力学性能,包括剪切弹性模量、剪切屈服强度、剪切破坏强度及剪切变形机制。研究发现,与单晶铜的剪切模拟相比较,石墨烯的加入显著增强了石墨烯/铜复合材料的剪切强度,并且剪切强度随着石墨烯体积分数的增大而提高。复合材料中的石墨烯层与铜层产生了协同作用,即石墨烯层阻碍了铜的位错扩展,铜层限制了石墨烯的结构屈曲。对含球形缺陷的石墨烯/铜复合材料的剪切性能也进行了研究。结果表明,不同位置和数量的球形小缺陷对复合材料的剪切性能影响不大,小缺陷石墨烯/铜复合材料仍具有较好的性能和使用价值。但随着缺陷直径的增大,复合材料的剪切强度明显减小。 The shear properties of graphene/copper composites were systematically studied by molecular dynamics method, including shear elastic modulus, shear yield strength, shear failure strength and shear deformation mechanism. It is found that the addition of graphene significantly improves the shear strength of the graphene/copper composites and the shear strength increases with the increasing of the volume fraction of graphene. The graphene layer in the composites has synergistic effect with the copper layer, i.e. the graphene layer prevents the copper dislocation propagation, and the copper layer blocks the buckling of the graphene structure. The shear properties of the graphene/copper composites with spherical defects were also investigated. The results show that the small size defects with different number and location have little effect on the shear properties of the composites. The graphene/copper composites with small defect still have good performance and application value. But with the increasing of the diameter of the defects, the shear strength of the composites decreases distinctly. 西安建筑科技大学校人才科技基金(DB12062)

References

[1]  TONKS D L, ALEXANDER D J, SHEFFIELD S A, et al. Spallation strength of single crystal and polycrystalline copper[J]. Journal De Physique IV, 2000, 10(PR9):787-792.
[2]  HUA J, ZHANG Y H, WU X X. Vibration analysis of defective graphene based on the molecular structural mechanics method[J]. International Journal of Computational Materials Science and Engineering, 2016, 5(1):1650002.
[3]  WANG C, LIU Y, LAN L, et al. Graphene wrinkling:Formation, evolution and collapse[J]. Nanoscale, 2013, 5(10):4454-4461.
[4]  华军, 武霞霞, 段志荣. 含缺陷双层石墨烯的纳米压痕模拟研究[J]. 力学学报, 2016, 48(4):917-925. HUA J, WU X X, DUAN Z R. Numerical study on nanoindentation of defective bilayer graphene[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4):917-925(in Chinese).
[5]  CHAE H K, SIBERIO-PéREZ D Y, KIM J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974):523-527.
[6]  LIU X Y, WANG F C, WANG W Q, et al. Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation[J]. Carbon, 2016, 107:680-688.
[7]  KLAVER T P C, ZHU S E, SLUITER M H F, et al. Molecular dynamics simulation of graphene on Cu (100) and (111) surfaces[J]. Carbon, 2015, 82:538-547.
[8]  郭俊贤, 王波, 杨振宇. 石墨烯/Cu复合材料力学性能的分子动力学模拟[J]. 复合材料学报, 2014, 31(1):152-157. GUO J X, WANG B, YANG Z Y. Molecular dynamics simulations on the mechanical properties of graphene/Cu composites[J]. Acta Materiae Compositae Sinica, 2014, 31(1):152-157(in Chinese).
[9]  STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool[J]. Modelling & Simulation in Materials Science & Engineering, 2010, 18(1):015012.
[10]  JI B, GAO H. Mechanical properties of nanostructure of biological materials[J]. Journal of the Mechanics and Physics of Solids, 2004, 52(9):1963-1990.
[11]  FOILES S M, BASKES M I, DAW M S. Erratum:Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys[J]. Physical Review B:Condensed Matter, 1986, 33(12):7983-7991.
[12]  STUART S J, TUTEIN A B, HARRISON J A. A reactive potential for hydrocarbons with intermolecular interactions[J]. Journal of Chemical Physics, 2000, 112(14):6472-6486.
[13]  MULLER S E, NAIR A K. Dislocation nucleation in nickel-graphene nanocomposites under mode I loading[J]. JOM, 2016, 68(7):1909-1914.
[14]  LIU X Y, WANG F C, WU H A, et al. Strengthening metal nanolaminates under shock compression through dual effect of strong and weak graphene interface[J]. Applied Physics Letters, 2014, 104(23):231901.
[15]  RAGAB T, BASARAN C. A framework for stress computation in single-walled carbon nanotubes under uniaxial tension[J]. Computational Materials Science, 2009, 46(4):1135-1143.
[16]  CHA S, KIM K, ARSHAD S, et al. Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing[J]. Advanced Materials, 2005, 17(11):1377-1381.
[17]  杨帅. 少层石墨烯增强铜基复合材料制备和性能研究[D]. 哈尔滨:哈尔滨工业大学, 2011. YANG S. Preparation and properties of copper composites reinforced with few layers graphene sheet[D]. Harbin:Harbin Institute of Technology, 2011(in Chinese).
[18]  XU Z, BUEHLER M J. Interface structure and mechanics between graphene and metal substrates:A first-principles study[J]. Journal of Physics:Condensed Matter, 2010, 22(48):485301.
[19]  DUAN K, ZHU F, TANG K, et al. Effects of chirality and number of graphene layers on the mechanical properties of graphene-embedded copper nanocomposites[J]. Computational Materials Science, 2016, 117:294-299.
[20]  HWANG J, YOON T, JIN S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecula-level mixing process[J]. Advanced Materials, 2013, 25(46):6724-6729.
[21]  SHI X, YIN Q, WEI Y. A theoretical analysis of the surface dependent binding, peeling and folding of graphene on single crystal copper[J]. Carbon, 2012, 50(8):3055-3063.
[22]  PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1):1-19.
[23]  李涛. Cu基石墨烯复合材料的制备及其性能研究[D]. 昆明:昆明理工大学, 2014. LI T. Preparation and properties of copper-graphene composites[D]. Kunming:Kunming University of Science and Technology, 2014(in Chinese).
[24]  HUA J, LIU Y, HOU Y. Study on irradiation repair of graphene with a crack[J]. International Journal of Computational Materials Science and Engineering, 2016, 5(2):1650011.
[25]  SINGH V, JOUNG D, LEI Z, et al. Graphene based materials:Past, present and future[J]. Progress in Materials Science, 2011, 56(8):1178-1271.
[26]  李彬. 石墨烯/铜复合材料制备及性能研究[D]. 哈尔滨:哈尔滨工业大学, 2012. LI B. Preparation and properties of graphene/copper composites[D]. Harbin:Harbin Institute of Technology, 2012(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133