全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

纤维体积含量和富树脂对复合材料V型结构固化变形的影响
Influence of fiber volume content and resin-rich area on process distortions of V-shaped composite parts

DOI: 10.13801/j.cnki.fhclxb.20170531.001

Keywords: 复合材料,热压罐工艺,回弹变形,纤维体积含量,富树脂,有限元分析
composite
,autoclave process,spring-in,fiber volume content,resin-rich,FEA

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究模具因素对复合材料纤维体积含量、富树脂以及固化变形的影响,利用热压罐工艺完成了T700/QY9611复合材料V型结构成型试验,对其纤维体积含量、富树脂厚度以及回弹变形进行测量与研究。建立了考虑热载荷、树脂收缩载荷、模具接触、纤维体积含量以及富树脂等因素的复合材料回弹变形预测三维有限元分析模型,定量分析了纤维体积含量梯度和富树脂对回弹变形的影响。研究结果表明:使用阴模模具产生10.0%的纤维体积含量梯度和2.2 mm的富树脂,拐角半径增大后分别减小为6.8%和1.2 mm,模具材料的影响较小;使用阴模成型试验件变形增大21.0%,使用拐角半径较大的阴模,变形减小了9.6%,阴模模具主要通过纤维体积含量和富树脂影响回弹变形;模拟结果表明:V型构件的变形与纤维体积含量梯度和富树脂厚度呈正比例,10%的纤维体积含量梯度导致13.5%的变形差异,3.0 mm厚的富树脂会产生45.8%的变形差异。模拟结果与实验结果对比验证了模型的准确性。 In order to study the effect of mold factors on fiber volume content, resin-rich and curing distortions of composite, a series of V-shaped T700/QY9611 composite parts were cured through autoclave process and the fiber volume, resin-rich area and spring-in were measured and studied. A three-dimensional finite element analysis (FEA) model considering the effect of thermal load, resin cure shrinkage, mold contact, fiber volume content and resin-rich was built to simulate the spring-in of V-shaped parts, and the effect of fiber content gradient and resin-rich on spring-in was quantitatively analyzed. The results show that there will be 10% of fiber volume content gradient and 2.2 mm thick resin-rich area in V-shaped parts fabricated on female mold and the value reduce to 6.8% and 1.2 mm for larger corner radius mold, meanwhile, mold materials have little effect on fiber volume content and resin-rich area. The spring-in of test specimens fabricated on female mold increase by 21.0% than male mold, and decrease by 9.6% with larger corner radius female mold. The female mold mainly affects spring-in through fiber volume content and resin-rich area. The simulation results show that spring-in are proportional to fiber volume content gradient and thickness of resin-rich area. 10% of fiber volume content gradient will lead to 13.5% of spring-in difference and 3.0 mm thick resin-rich area will result in 45.8% of spring-in difference. The comparison between simulation results and experiment verifies the model.

References

[1]  CMH-17协调委员会. 复合材料手册. 1, 聚合物基复合材料-结构材料表征指南[M]. 上海:上海交通大学出版社, 2014. CMH-17. Composite material handbook. 1, Polymer matrix composites-guidelines for characterization of structural materials[M]. Shanghai:Shanghai Jiaotong University Press, 2014(in Chinese).
[2]  ERSOY N, GARSTKA T, POTTER K, et al. Modelling of the spring-in phenomenon in curved parts made of a thermosetting composite[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(3):410-418.
[3]  庞杰, 金海波. 基于复合材料固化变形的铺层顺序优化方法[J]. 中国机械工程, 2010, 21(15):1859-1863. PANG J. JIN H B. Stacking sequence optimization method based on cured deformation of composites[J]. China Mechanical Engineering, 2010, 21(15):1859-1863(in Chinese).
[4]  PATHAM B. Multiphysics simulations of cure residual stresses and springback in a thermoset resin using a viscoelastic model with cure-temperature-time superposition[J]. Journal of Applied Polymer Science, 2013, 129(3):983-998.
[5]  张纪奎, 郦正能, 关志东, 等. 热固性复合材料固化过程三维有限元模拟和变形预测[J]. 复合材料学报, 2009, 26(1):174-178. ZHANG J K, LI Z N, GUAN Z D, et al. Three-dimensional finite element simulation and prediction for process induced deformation of thermoset composites[J]. Acta Materiae Compositae Sinica, 2009, 26(1):174-178(in Chinese).
[6]  刘哲. 热固性树脂基复合材料固化变形数值模拟分析[D]. 哈尔滨:哈尔滨工业大学, 2014. LIU Z. Numerical simulation of curing deformation of thermosetting resin matrix composites[D]. Harbin:Harbin Institute of Technology, 2014(in Chinese).
[7]  朱凌宇. 热固性树脂基纤维增强复合材料固化变形研究[D]. 南京:南京航空航天大学, 2010. ZHU L Y. Study on curing induced shape distortion for thermosetting resin matrix fibre-reinforced composites[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
[8]  BAPANAPALLI S K, SMITH L V. A linear finite element model to predict processing-induced distortion in FRP laminates[J]. Composites Part A:Applied Science & Manufacturing, 2005, 36(12):1666-1674.
[9]  NAJI M I, HOA S V. Curing of thick angle-bend thermoset composite part:Curing cycle effect on thickness variation and fiber volume fraction[J]. Journal of Reinforced Plastics & Composites, 1999, 18(8):702-723.
[10]  AKKERMAN R, WIERSMA H W, PEETERS L J B. Spring-forward in continuous fibre reinforced thermosets[C]//Proceedings of the 6th International Conference on Numerical Methods in Industrial Forming Processes. Rotterdam:A. A. Balkema, 1998:471-476.
[11]  ZHAO L G, WARRIOR N A, LONG A C. A thermo-viscoelastic analysis of process-induced residual stress in fibre-reinforced polymer-matrix composites[J]. Materials Science & Engineering A, 2007, 452(24):483-498.
[12]  DONG C. Process-induced deformation of composite T-stiffener structures[J]. Composite Structures, 2010, 92(7):1614-1619.
[13]  JOHNSTON A, VAZIRI R, POURSARTIP A. A plane strain model for process-induced deformation of laminated composite structures[J]. Journal of Composite Materials, 2001, 35(16):1435-1469.
[14]  王仁宇, 关志东, 王乾, 等. 复合材料V型构件的固化变形预测及其工装型面设计[J]. 材料导报, 2017, 31(1):130-135. WANG R Y, GUAN Z D, WANG Q, et al. Cure-induced deformation prediction and tool surface design for V profile composite part[J]. Materials Review, 2017, 31(1):130-135.
[15]  KAPPEL E, STEFANIAK D, HVHNE C. Process distortions in prepreg manufacturing:An experimental study on CFRP L-profiles[J]. Composite Structures, 2013, 106:615-625.
[16]  陈祥宝, 张宝艳, 邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展, 2009, 28(6):2-12. CHEN X B, ZHANG B Y, XING L Y. Application and development of advanced polymer matrix composites[J]. Materials China, 2009, 28(6):2-12(in Chinese).
[17]  张纪奎, 郦正能, 关志东, 等. 热固性树脂基复合材料固化变形影响因素分析[J]. 复合材料学报, 2009, 26(1):179-184. ZHANG J K, LI Z N, GUAN Z D, et al. Analysis on factors influencing process-induced deformation for thermoset composites[J]. Acta Materiae Compositae Sinica, 2009, 26(1):179-184(in Chinese).
[18]  张纪奎, 郦正能, 关志东, 等. 复合材料层合板固化压实过程有限元数值模拟及影响因素分析[J]. 复合材料学报, 2007, 24(2):125-130. ZHANG J K, LI Z N, GUAN Z D, et al. Compaction of laminated composites:Numerical simulation and analysis on influencing factors[J]. Acta Materiae Compositae Sinica, 2007, 24(2):125-130(in Chinese).
[19]  STEFANIAK D, KAPPEL E, SPR?WITZ T, et al. Experimental identification of process parameters inducing warpage of autoclave-processed CFRP parts[J]. Composites Part A:Applied Science & Manufacturing, 2012, 43(7):1081-1091.
[20]  MEZEIX L, SEMAN A, NASIR M N M, et al. Spring-back simulation of unidirectional carbon/epoxy flat laminate composite manufactured through autoclave process[J]. Composite Structures, 2015, 124:196-205.
[21]  赵书婧. 复合材料热压罐固化变形及压实过程分析[D]. 哈尔滨:哈尔滨工业大学, 2011. ZHAO S Q. Analysis of composite material autoclave curing deformation and compaction process[D]. Harbin:Harbin Institute of Technology, 2011(in Chinese).
[22]  KAPPEL E, STEFANIAK D, SPR?WITZ T, et al. A semi-analytical simulation strategy and its application to warpage of autoclave-processed CFRP parts[J]. Composites Part A:Applied Science & Manufacturing, 2011, 42(12):1985-1994.
[23]  WISNOM M R, GIGLIOTTI M, ERSOY N, et al. Mechanisms generating residual stresses and distortion during manufacture of polymer-matrix composite structures[J]. Composites Part A:Applied Science & Manufacturing, 2006, 37(4):522-529.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133