全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

混杂薄膜天线层的双稳态复合材料层板力电性能
Mechanical and electric performance of bistable composite laminates with membrane antenna

DOI: 10.13801/j.cnki.fhclxb.20170621.001

Keywords: 天线混杂,双稳态层板,电性能,方向图可重构,Rayleigh-Ritz法
antenna hybrid
,bistable laminate,electric property,pattern reconfigurable,Rayleigh-Ritz method

Full-Text   Cite this paper   Add to My Lib

Abstract:

给出了既有双稳态特性又具有天线功能的多功能复合材料层板设计与分析方法。基于非线性层板理论和Rayleigh-Ritz法,建立了双稳态混杂层板构型预报理论模型,并通过有限元计算和实验进行了验证。研究了薄膜天线混杂非对称双稳态复合材料层板的临界载荷及电磁性能,分析了铺层方式对双稳态混杂层板稳定构型、临界载荷和电磁性能的影响。结果表明:双稳态混杂层板通过转变其稳定构型实现天线主辐射方向在俯仰面内偏转30°,实现方向图可重构,扩大天线波束的扫描范围。铺层方式对层板构型和反射系数影响较大,当天线辐射层铺设在层板表面且聚酰亚胺薄膜厚度大于0.2 mm时,其双稳态特性消失,没有出现分叉现象,且其中心频率会左移大约0.2 GHz。 A design and analysis method of multifunctional composite laminates, merging bistable characteristics and antenna function was presented. Based on nonlinear laminated theory and Rayleigh-Ritz method, the stable geometrical configuration of the bistable hybrid laminate was predicted. The theoretical, finite element analysis and measured stable geometrical configurations agree well with each other. The critical loads and electromagnetic performance of the bistable hybrid laminate were investigated. The influences of lay-ups on the configurations, critical loads and electromagnetic performance of the bistable laminate were studied. The results indicate that the main direction of the antenna is reconfigured about 30° in the vertical plane which can expand the beam steering by changing the two stable state of the hybrid laminate. The lay-ups of the laminate has a great influence on the configurations and reflection coefficient of bistable laminate. When the polyimide film thickness is higher than 0.2 mm, the laminate with surface antenna radiation layer has no bistable characteristics and its center frequency will shift to left about 0.2 GHz. 国家自然科学基金(11372087;11421091)

References

[1]  EMAM S A, INMAN D J. A review on bistable composite laminates for morphing and energy harvesting[J]. Applied Mechanics Reviews, 2015, 67(6):1-15.
[2]  DIACONU C G, WEAVER P M, MATTIONI F. Concepts for morphing airfoil sections using bi-stable laminated composite structures[J]. Thin-Walled Structures, 2008, 46(6):689-701.
[3]  DAYNES S, NALL S J, WEAVER P M, et al. Bistable composite flap for an airfoil[J]. Journal of Aircraft, 2012, 47(47):334-338.
[4]  ARRIETA A F, KUDER I K, RIST M, et al. Passive load alleviation aerofoil concept with variable stiffness multi-stable composites[J]. Composite Structures, 2014, 116(9):235-242.
[5]  KIM S W, KOH J S, LEE J G, et al. Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface[J]. Bioinspiration & Biomimetics, 2014, 9(3):036004.
[6]  COSTANTINE J, TAWK Y, CHRISTODOULOU C G. Reconfigurable deployable antennas for space communications[C]//IEEE. International Workshop on Antenna Technology:"Small Antennas, Novel Em Structures and Materials, and Applications", Sydney:IEEE, 2014:151-154.
[7]  HYER M W. Calculation of the room-temperature shapes of unsymmetric laminates[J]. Journal of Composite Materials, 1981, 15(4):229-235.
[8]  HARPER B D. The effects of moisture induced swelling upon the shapes of anti-symmetric cross-ply laminates[J]. Journal of Composite Materials, 1987, 21(1):36-48.
[9]  CHO M, ROH H Y. Non-linear analysis of the curved shapes of unsymmetric laminates accounting for slippage effects[J]. Composites Science & Technology, 2003, 63(15):2265-2275.
[10]  GIGLIOTTI M, WISNOM M R, POTTER K D. Loss of bifurcation and multiple shapes of thin[0/90] unsymmetric composite plates subject to thermal stress[J]. Composites Science & Technology, 2004, 64(1):109-128.
[11]  MATTIONI F, WEAVER P M, POTTER K D, et al. Analysis of thermally induced multistable composites[J]. International Journal of Solids & Structures, 2008, 45(2):657-675.
[12]  HU J Q, LIN S, DAI F H. Pattern reconfigurable antenna based on morphing bi-stable composite laminates[J]. IEEE Transactions on Antennas & Propagation, 2017, 65(6):2196-2207.
[13]  SCHULTZ M R, HYER M W. Snap-through of unsymmetric cross-ply laminates using piezoceramic actuators[J]. Journal of Intelligent Material Systems & Structures, 2003, 14(12):795-814.
[14]  ARRIETA A F, DELPERO T, BERGAMINI A E, et al. Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites[J]. Applied Physics Letters, 2013, 102(17):173904.
[15]  COSTANTINE J, TAWK Y, CHRISTODOULOU C G, et al. Cubesat deployable antenna using bistable composite tape-springs[J]. IEEE Antennas & Wireless Propagation Letters, 2012, 11(11):285-288.
[16]  JUN W J, HONG C S. Effect of residual shear strain on the cured shape of unsymmetric cross-ply thin laminates[J]. Composites Science & Technology, 1990, 38(1):55-67.
[17]  杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese).
[18]  蔡良元, 白树成, 曲建直, 等. 某新型航天器返回舱舱门共形天线研制[J]. 宇航材料工艺, 2000, 30(5):66-69. CAI Liangyuan, BAI Shucheng, QU Jianzhi, et al. A study of return module hatchdoor conformal antenna[J]. Aerospace Materials & Technology, 2000, 30(5):66-69(in Chinese).
[19]  YAO L, QIU Y P. Design and fabrication of microstrip antennas integrated in three dimensional orthogonal woven composites[J]. Composites Science & Technology, 2009, 69(7-8):1004-1008.
[20]  戴福洪, 王广宁. 埋微带天线蜂窝夹层结构的力电性能分析[J]. 复合材料学报, 2011, 28(2):231-234. DAI Fuhong, WANG Guangning. Analysis of mechanical and electric performance of honeycomb sandwich structures embedded with the microstrip antenna[J]. Acta Materiae Compositae Sinica, 2011, 28(2):231-234(in Chinese).
[21]  DIACONU C G, WEAVER P M, MATTIONI F. Concepts for morphing airfoil sections using bi-stable laminated composite structures[J]. Thin-Walled Structures, 2008, 46(6):689-701.
[22]  FAIZUDDIN M. The application of thermally induced multistable composites to morphing aircraft structures[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2008, 69(30):1-11.
[23]  LI H, DAI F H, DU S Y. Broadband energy harvesting by exploiting nonlinear oscillations around the second vibration mode of a rectangular piezoelectric bistable laminate[J]. Smart Materials & Structures, 2015, 24(4):045024.
[24]  PAN D K, DAI F H, LI H. Piezoelectric energy harvester based on bi-stable hybrid symmetric laminate[J]. Composites Science & Technology, 2015, 119:34-45.
[25]  DAI F H, LI H, DU S Y. Design and analysis of a tri-stable structure based on bi-stable laminates[J]. Composites Part A:Applied Science & Manufacturing, 2012, 43(9):1497-1504.
[26]  LI H, DAI F H, WEAVER P M, et al. Bistable hybrid symmetric laminates[J]. Composite Structures, 2014, 116(1):782-792.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133